9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как выучить математику

Ответы по математике: зачем её учить, с чего начать и как с этим жить

Расставляем все точки над «i» вместе с математиком Марис Сегинёвой

Слово «математика» происходит от греческого «матема» — знание, познание. Математика, как и шахматы — это способ научиться думать логически, рационально. Особенность математики в том, что её методы служат другим наукам. Например, в социологии и психологии данные опросов обрабатываются статистически. В генетике анализируют распределение признаков с помощью сложных моделей расчёта.

Одни называют математику точной наукой, другие — искусством. Каждый даёт определение в силу своего математического опыта и фантазии. Если человек научился складывать целые положительные числа в пределах сотни, то он будет считать математику точной наукой. При этом те, кто знаком с комплексными числами и неевклидовой геометрией, с ним не согласятся.

Определение математики зависит от отношения к ней. Для тех, кому на уроках было сложно и скучно, она сухая и точная. Влюблённые в математику воспринимают её как искусство. Хорошая новость в том, что строить хорошие отношения с математикой никогда не поздно, если ученик хочет в ней разбираться.

Зачем нужна математика и что значит «знать» её

Кое-что из математики используется в повседневной жизни: когда нужно поделить пиццу на 8 равных частей, посчитать стоимость товара со скидкой 20%, выбрать сумку к новым туфлям и брюкам. По мнению математика и педагога Марис Сегинёвой, обычному человеку для жизни достаточно изучить математику в объёме 5—7 класса школьной программы:

«Всё зависит от того, в какой момент в учебнике появляются отрицательные числа. Конечно, можно увидеть на термометре значение минус 10 градусов Цельсия, но вот в США пользуются шкалой Фаренгейта, а вообще кроме погоды в быту эти знания не пригодятся».

Для наглядности — в чём разница между шкалой Цельсия и Фаренгейта

В математике выделяют несколько областей знания, и то, что изучается в большинстве начальных школ правильнее называть арифметикой. Это раздел математики, который изучает числа и действия с ними: сложение, вычитание, умножение и деление целых и дробных чисел.

«Если школьник знает математику, у него и с другими предметами будет хорошо. Он научился думать, он научился видеть целое и собирать его из частей. Обратно этот принцип не работает: если ученик успешен в других предметах, нет гарантий, что он поймёт и математику», — Марис Сегинёва.

Редко в начальном курсе математики встречаются задачи на комбинаторику, логику и теорию вероятностей. Поэтому для большинства людей «знать математику» — значит уметь применить расчёты для решения житейских задач: сколько нужно продуктов, чтобы приготовить в два раза больше окрошки; какую сумму нужно сдать на общий подарок имениннику; во сколько выезжать из дома, чтобы приехать к началу спектакля.

Для чего изучают математику в старших классах

По замыслу разработчиков образовательной программы выпускники школы поступают в вузы. В вузах они осваивают профессии для того, чтобы стать практиками или исследователями в различных областях. Специалистам технических и естественнонаучных областей математика полезна, а учёным — необходима.

Марис Сегинёва: «Современная наука основана на математических методах. Когда абитуриент думает, что будет заниматься микробиологией, генетикой, психологией, социологией, лингвистикой или экономикой, в конечном счёте ему придётся заниматься и математикой тоже».

Авторы школьных учебников не знают, кто именно из выпускников станет учителем литературы, кто музейным работником, а кто программистом, поэтому на всякий случай все старшеклассники знакомятся с алгеброй и началами математического анализа.

Решать задачи с логарифмами и брать производные будет полезно любому ученику общеобразовательной школы. Будущим инженерам и математикам уроки будут подспорьем, поскольку школьная алгебра — мостик от арифметики к высшей математике, которую изучают в вузе.

Тем, кто выбрал сдавать профильный ЕГЭ по математике, лучше не останавливаться и решать задачи при каждом удобном случае. Будущим историкам, художникам и музыкантам стоит как можно скорее изучить демовариант базового ЕГЭ по математике, чтобы знать, какие темы изучать пристально, а какими можно будет пренебречь.

С чего начать отношения с математикой

Древнеегипетские жрецы умели умножать только на два, и считались очень продвинутыми. А в Средние века математики собирались в городе Пиза на конкурс деления чисел, записанных римскими цифрами. Соревновались, например, кто быстрее правильно поделит число LXXIV пополам.

Сейчас, благодаря десятичной системе счисления и приёмам работы с числами, обычный третьеклассник даст фору средневековым преподавателям. Но когда-то не было большей части того, что сегодня называется математикой.

Отношения с математикой можно начать в любой момент.

  1. Самый простой способ — найти учителя или курс, который поможет поверить в свои силы и заняться интересными вещами из области математики: олимпиадный кружок для ребят более младшего возраста, онлайн-курс, журнал или заочная математическая школа.
  2. Полезно смотреть видеоролики популяризаторов математики на русском и английском языке.
  3. Можно отыскать вдохновение в книгах. Биографии известных учёных, рассказы, написанные математиками и пособия для начинающих.
Читать еще:  Почему ухудшается зрение у подростков

Список вдохновляющих ресурсов преподавателя математики Марис Сегинёвой

  • Ютьюб-каналы Алексея Савватеева и Артура Шарифова, англоязычный канал Numberphile.
  • Статья «Плач математика» Пола Локхарта.
  • Ученикам младшей и средней школы: произведения «Нолик-мореход», «Три дня в Карликании» В. А. Лёвшина, «Островитянка» , «Научные сказки» Ника Горькавого, «Уроки дедушки Гаврилы, или Развивающие каникулы», пособие «Наглядная геометрия» И. Ф. Шарыгина. А также книга и рабочая тетрадь «Наглядная геометрия» В. А. Смирновой, И. М. Смирновой и И. В. Ященко.
  • На сайте Центра непрерывного математического образования можно скачивать задания и брошюры, а также узнавать о математических конкурсах и мероприятиях для школьников.
  • Журналы «Лучик», «Квантик» и «Квант».
  • Банк задач разного уровня сложности problems.ru для школьников и учителей.
  • Заочная математическая школа петербургского образовательного центра: присылают задания каждую неделю и дают комментарии в ответ на решения учеников.

Понять математику может любой. Если ученику трудно освоить какую-то тему или раздел, нужно спуститься на ступеньку ниже. С математикой никогда не стоит торопиться, ею следует заниматься в своём темпе и с удовольствием.

Хотите получать новые статьи во «ВКонтакте»? Подпишитесь на рассылку полезных статей

Математика самостоятельно. С чего начать.

Все что написано – ИМХО. Следовать или нет советам ваше личное решение. Помните : То что помогает одним, может быть бесполезно для других и наоборот.

Каждый год примерно в начале мая начинается шквал звонков. Подходит конец учебного года и родители начинают осознавать, что скоро экзамены, а сыночка-любимочка чет приуныл. А поступать надо, и математика обязательный экзамен, а времени в обрез.

Ниже я подскажу как лучше подготовиться и без особой боли сдать экзамен.

1)Лучше начинать готовится заранее. Идеально с начала учебного года. В таком случае, мне сразу видно какие проблемы есть и можно не спеша разобрать пропущенные темы и нагонять отставание. При этом будет запас времени на случай болезни,отпуска,праздников,форсмажоров.

Количество уроков все равно примерно будет одинаковым, но при этом можно будет не “гнать лошадей в галоп”, а заниматься не особо напрягаясь.

Например. Есть Вася. 9 класс. В январе звонит мама – “Чет у Васи за четверть тройка еле вышла. А раньше сдавал все на 4-5. Посмотрите что да как – у нас же экзамены скоро”

Смотрим, а Вася с трудом считает таблицу умножения и не помнит график параболы. В ходе беседы обнаруживаются еще пробелы за 6,7,8 класс.

Ориентировочно, с таким раскладом, с Васей надо заниматься 4 раза в неделю по 2 часа за урок. 2 раза алгебра, 2 геометрия.
Январь, февраль, март в таком темпе. Апрель – 3 раза, Май – 2 в неделю. Все примерно и зависит в 1 очередь от трудолюбия Васи. Если брать по урокам то примерно получается 16х3 + 12 + 8 = 68 уроков х 500 руб (в среднем) = около 35 000 рублей. Это в среднем.

Можно существенно сократить расходы на репетитора, если брать домой (ученику) большую часть работы. Тогда уже можно справиться ориентировочно за 30 уроков = 15 000 рублей. Уже существенная экономия, и тут я постараюсь помочь сэкономить пару рублей родителям/ученикам. Ниже напишу – как именно.

Итак, с чего лучше начать?

1) С простых действий. + и – , умножить и разделить. Основа основ. “Верно” выполненный пример с ошибкой типа 2+3=6 не даст нам правильного ответа.
Затраты времени 20-30 минут ежедневно. Повторять до тех пор, пока из 100 будет 1-2 ошибки максимум. (-15+23, 14х6, 111:3 и так далее)

2)Учим формулы. Без формул никуда. Заодно и для памяти тренировка.
Затраты времени 20-30 минут ежедневно. Надо знать все площади,объемы,свойства простейших фигур (по геом.) все формулы сокращенного умножения, свой-ва корней, степеней, графики функций и т.д. по алгебре.

3)Умение это все применять на практике. А вот тут нам уже и нужен репетитор.

Если вы выучили все формулы, не делаете глупых ошибок в таблице умножения и при сложении/вычитании, то можно начинать решать примеры и задания.
Определяете тему в которой не можете разобраться.
Приглашаете репетитора – разбираете тему/несколько тем на занятии.
Прорабатываете 5-10-20 примеров дома до полного осознания темы и закрепления материала.

Это вроде как понятно и логично, но 95% дома ничего не делают. Потому и затягивается обучение на 60-70 уроков минимум, иногда и больше. По сути, если человек ЗАИНТЕРЕСОВАН заниматься и ХОЧЕТ узнать математику, то его хватит только слегка направить и объяснить основные пробелы. Сейчас в инете достаточно материалов, как письменных (ГДЗ те же) так видео на ютубе. Можно и без всяких репетиторов сесть и разобраться, если уже есть база знаний (1-6 класс) Допустим данного человека очень всем советую для ознакомления. Хорошо и толково все объясняет, и что немаловажно – бесплатно! 🙂

То есть, если есть желание, то можно все выучить самому. Смотря на образец и решая подобные примеры. Постепенно нарабатывая базу и замечая закономерности в решении тех или иных задач. Но! Даже с репетитором – если сделать первые шаги самостоятельно, и регулярно делать д/з, закрепляя самостоятельно пройденный материал – то можно сэкономить кругленькую сумму денег.

Читать еще:  Sound pro что за фирма

А что случится если мама нашего Васи позвонит в мае? Как показывает практика надо провести те же самые 40-50-60 уроков, но вот времени уже нет! И приходится или потеть по 4 часа каждый день 6 дней в неделю, или, что чаще бывает – через неделю такого рода занятий у Васи резко обостряются все болячки (на фоне того, что за целый год он лентяйничал и не привык плотно работать головой) + репетиции выпускного в школе + подготовка в школе к экзаменам + родители осознают что уроки стоят денег и 6 000 в неделю это как бы многовато для бюджета семьи. И Вася технично увиливает с занятий, радостно продолжая ничего не делать. Как сдается экзамен в таком случае я не знаю, да и не особо интересуюсь кто сколько кому платит!

Итого:
1)Лучше готовиться заранее. Чем раньше – тем лучше.
2)Надо заниматься. С репетитором или без, но надо заниматься. Примерно 1.5 часа в день 5-6 дней в неделю до полного “выздоровления”.
3)Если нужен репетитор, то МАКСИМАЛЬНО подготовьте то, что можете сами. Это существенно сэкономит денежку.

С тебя и тройки хватит!

Знакомые слова, не правда ли?) Хотя в ЕГЭ и ГИА другая система оценок, но все всё понимают. Этот раздел – базовый. Здесь просто и доступно изложено то, чего не знать нельзя! Без этих знаний – никуда. Ни троечникам, ни отличникам, ни (особенно!) тем, кто закончил школу раньше. И, конечно, тем, кто намерен сдать ЕГЭ или ГИА на тройку.

Как учить математику?

Кому-то этот раздел покажется очень простым, даже примитивным. Отлично! Просмотрите его, прорешайте предложенные задания и двигайтесь дальше. Но учтите: 70% ошибок на ЕГЭ – по темам из начальной школы! Это дроби, отрицательные числа, элементарные преобразования выражений и все такое же простенькое. Высокий полет математической мысли заканчивается дурацкими ошибками на уровне пятого класса. На одни и те же грабли. Обидно, правда? Так как же учить математику?

Этот вопрос интересует многих. Школьников младших и средних классов. Выпускников и абитуриентов. Тех, кто закончил школу уже давненько, но надумал продолжать обучение. Вопрос как учить математику особо волнует перед ЕГЭ и ГИА.

Отвечу всем сразу.

Первым делом нужно ликвидировать пробелы из прошлого. Если вы пропустили (не поняли, принципиально не изучали, и т.д.) какую-нибудь тему, рано или поздно вы обязательно наступите на эти грабли. С классическим результатом. Уж так устроена математика.

Ну ладно, скажете вы. Пробелы, это понятно. А как их ликвидировать? Как учить математику!?

Спокойствие! Я продолжаю.

Независимо от того, изучаете вы новую тему, или повторяете старую – освойте математические определения и термины! Обратите внимание, я не сказал – “выучите”. Я сказал “освойте”. Это разные вещи. Вы должны понимать, к примеру, что такое дискриминант, арифметическая прогрессия, или арксинус на простом, даже примитивном уровне. Что это такое, зачем это нужно и как с этим обращаться. Жить станет легче.

Если я вас спрошу, как пользоваться устройством перехода через плотные ограниченные среды, вам будет неуютно отвечать, верно? А если вы понимаете, что это самое устройство – обычная дверь? Правда, как-то веселее ?

И, конечно, нужно решать. Если не умеете решать – ничего страшного. Нужно пытаться решать, пробовать. Все когда-то не умели. Но кто пытался и пробовал, пусть и неправильно, с ошибками – тот сейчас умеет решать. А кто не пробовал, типа всё равно не получается. – тот так и не научился.

Вот вам три составляющие ответа на вопрос “Как учить математику?” Ликвидировать пробелы, освоить термины на понятном уровне и осмысленно решать задания.

По этим принципам и разработан этот сайт. Хотя акцент сделан на подготовку к ЕГЭ и ГИА, материалы сайта вполне годятся для помощи всем школьникам. Начиная с пятого класса. Таблицы умножения здесь нет.

Этот раздел активно посещают 7-9 классы. Они знают, что многого ещё не знают. Активно посещают те, кто закончил школу раньше. Они знают, что многое уже забыли.

А многие выпускники думают, что они многое знают. Печальное заблуждение! Прочитайте слоган в шапке этой страницы, и не игнорируйте этот раздел!

В этом разделе приведены сведения из начальной и средней школы, которые знать совершенно необходимо. В самом простом виде. Без различных нюансов. Возможно, вы эти сведения, того… подзабыли. В этом разделе описаны практические приемы, уменьшающие количество ошибок и ляпов. В этом разделе начинается освоение метода решения любого задания по математике. И все это в применении к ЕГЭ. Короче: читать всем!

Кроме того, в ЕГЭ присутствуют задания, которые представляют, увы, традиционные проблемы для выпускников. Это текстовые задачи, задачи на проценты и задания, где нужно уметь неплохо считать в уме. Или, хотя бы, на бумажке! Для таких заданий правильного хода мыслей недостаточно. Проверяющему компьютеру нужен верный ответ! А безошибочность расчётов добывается только в практике.

Читать еще:  Что случилось с актёром Василием Степановым

Решайте предлагаемые задания этого раздела! Если они решаются быстро и правильно – примите к сведению практические советы и следуйте дальше. Если быстро и неправильно – значит, вы пишете слишком быстро. Быстрее, чем думаете…. Притормозите и изучите, не спеша, тему. Если медленно и неправильно – то же самое. Даже и притормаживать не придется!)

Очень полезное пожелание: не ограничивайтесь приведенными здесь заданиями! Их здесь маловато будет для победы! Берите учебники, любые пособия (желательно с ответами) и решайте, решайте, решайте! С помощью мудрых мыслей этого раздела. Пока все формулы и понятия раздела не устроятся в голове прочно, железно, до автоматизма!

Понимаете, можно уметь забивать гвозди, можно не уметь забивать гвозди, но без молотка… Так вот, этот раздел – молоток. Вернее, не только молоток, а… малый джентльменский набор. Странный набор, на первый взгляд – здесь и арифметика, и логарифмы, и показательные неравенства. Но так надо. На все случаи жизни. Да и связаны эти темы накрепко и в математике, и в ЕГЭ.

Тайная суть математики

Если вам математика представляется дебрями каких-то правил, формул, выражений, в которых невозможно ориентироваться, то я вас утешу. Есть, есть там тропы и путеводные звезды! Обживетесь, попривыкнете, еще и любоваться этими дебрями начнете… Итак, пролью немного света на темный лес.

Математика школьного курса не решает сложные примеры. Не умеет. Она хорошо может решить что-нибудь типа 2х=10, квадратное уравнение через дискриминант, ну и такое же простенькое из тригонометрии, логарифмов и т.д. И вся мощь математики направлена на упрощение сложных выражений. Именно для этого нужны правила и формулы различных преобразований. Они позволяют записывать исходное выражение в другом, удобном нам виде, не меняя его сущности.

Например, 9 = 2+7 = 3 2 = log2512. Это всё одно и то же число 9! Только записанное в самых разных видах. Какой вид выбрать – решать нам! Сообразуясь с заданием и здравым смыслом.

Внимание! Главная путеводная звезда. Практически любое решение начинается с преобразования исходного выражения. С помощью правил и формул. Вы удивитесь, но их вовсе не такое безумное количество, как вам кажется. Конечно, все формулы знать назубок – слишком смелое пожелание, но те, что используются всегда – уж, пожалуйста! Я для вас специально буду занудно про эти формулы все время повторять.

Еще немного света. Банальная фраза: «Все формулы работают слева – направо и справа – налево». Кто бы спорил? Но я раскрою вам ее глубокий смысл. Скажем, (a+b) 2 каждый. гм. почти каждый распишет как a 2 +2ab+b 2 . Обычная формула сокращённого умножения. Такое задание вам на экзамене точно не попадется (а жаль, правда?).

Но не каждый (к сожалению. ) сообразит, что x 2 +2x+1 можно записать, как (x+1) 2 . А вот это реально надо уметь! Формулы нужно знать в лицо! Уметь опознавать их в зашифрованных хитрыми преподавателями выражениях, выявлять части формул, доводить, при нужде, до полных.

Предположим, что правила и формулы мы знаем. А что из всего этого использовать!? Куда двигаться!? Если можно и так и сяк (особенно, в тригонометрии). Не волнуйтесь! Работайте с сайтом, и всё станет ясно.

Преобразование выражений – вещь, поначалу, хлопотная. Труда требует. На стартовом этапе нужно проверять, где можно, правильность преобразования обратным преобразованием. Типа разложили на множители – перемножьте обратно и приведите подобные. Получилось исходное выражение – ура! Но, почти наверняка, что-то со знаками… не того…. Скорректируйте знаки. Нашли корни уравнения – подставьте в исходное выражение. Посмотрите, что получилось. И так далее.

Очень скоро труды окупятся, и преобразования будут делаться легко и непринужденно. Почти в уме. Это резко снизит количество досадных ошибок и повысит ваш рейтинг в ЕГЭ.

И последнее: примеры, на которых мы будем осваивать математику, требуют вашего внимания. Это означает, что их нельзя пробегать глазами, думая о чем-то своем, далеком…. Нужно врубаться и понимать, как получилось то или иное выражение, что мы сделали, почему так, а не иначе. При необходимости не ленитесь, загляните в соответствующий раздел сайта, уточните формулу. Если сайт вам ненавязчиво советует что-то сделать, делайте обязательно! Работайте, короче. С бумагой и ручкой. Тогда ваш рейтинг точно возрастёт! Ну а ключевые и особо хитрые моменты разъяснены в тексте.

Ну а теперь – вперед! Осваиваем тропинки по дебрям.

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся – с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Источники:

https://media.foxford.ru/how-to-study-math/
https://pikabu.ru/story/matematika_samostoyatelno_s_chego_nachat_4114639
https://www.egesdam.ru/page200.html

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов:
Для любых предложений по сайту: [email protected]