201 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие органоиды отсутствуют у прокариот

Биология. 10 класс

Мембранные органоиды клетки

Мембранные органоиды клетки. Ядро. Прокариоты и эукариоты

Необходимо запомнить

Органоиды, или Органеллы, – постоянные специфические структуры цитоплазмы, выполняющие определённые функции, необходимые для поддержания жизнедеятельности клетки.

Различают органоиды общего значения и специальные органоиды. Органоиды общего значения имеются во всех клетках и выполняют общие функции. Это – митохондрии, рибосомы, эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, цитоскелет и клеточный центр.

Органоиды специального значения имеются только в клетках какого-то определённого типа и обеспечивают выполнение функций, присущих только этим клеткам.

Эндоплазматическая сеть (ЭПС) открыта К. Портером в 1945 году. ЭПС или ЭПР (эндоплазматический ретикулум) – сеть канальцев и цистерн, сложенных мембранами. Различают гранулярную (шероховатую, зернистую) и гладкую (агранулярную) ЭПС.

Гранулярная ЭПС содержит рибосомы на наружной стороне мембраны. Гладкая ЭПС не содержит рибосомы. В скелетных мышцах ЭПС носит название саркоплазматический ретикулум. ЭПС пронизывает всю клетку. Полость ЭПС сообщается с ядром и цитоплазматической мембраной.

На рибосомах гранулярной ЭПС синтезируются секреторные белки, предназначенные для выведения из клетки, а также белки лизосом и внеклеточного матрикса.

Наряду с секреторными белками на гранулярной ЭПС синтезируется большая часть полуинтегральных и интегральных белков. В гладеой ЭПС происходит также синтез мембраны липидов и осуществляется «сборка» компонентов мембраны.

Кроме того, ЭПС, как считают, участвует в образовании пероксисом. Таким образом, гранулярная ЭПС служит «фабрикой» мембран для плазмалеммы, аппарата Гольджи, лизосом и других мембранных структур клетки.

Агранулярная (гладкая) эндоплазматическая сеть представляет собой замкнутую сеть трубочек, канальцев, цистерн. На цитоплазматической поверхности гладкой ЭПС синтезируются жирные кислоты, большая часть липидов клетки, в том числе почти все липиды, необходимые для построения клеточных мембран. Поэтому гладкую ЭПС нередко называют «фабрикой липидов». Например, в клетках печени с мембранами гладкого эндоплазматического ретикулума связан фермент, обеспечивающий образование глюкозы из глюкозо-6-фосфата. Эта реакция имеет большое значение в поддержании уровня глюкозы в организме человека.

В организме человека эндоплазматическая сеть особенно хорошо развита в клетках, синтезирующих гормоны, в клетках печени.

Комплекс Гольджи (КГ, или аппарат Гольджи, – пластинчатый комплекс, расположен вблизи ядра, между ЭПС и плазмалеммой. Его структурно-функциональная единица – диктиосома – представляет собой стопку из 5–20 плоских одномембранных мешочков (цистерн), имеющих диаметр около 1 мкм, внутренние полости которых не сообщаются друг с другом. Количество таких мешочков в стопке обычно не превышает 5–20, а расстояние между ними составляет 20–25 нм.

Белки, синтезированные на шероховатой эндоплазматической сети, попадают в аппарат Гольджи. Здесь осуществляется химическая модификация транспортируемых белков и их упаковка в специальные пузырьки.

Таким образом, основными функциями комплекса Гольджи являются химическая модификация, накопление, сортировка, упаковка в секреторные пузырьки и транспорт по назначению белков и липидов, синтезированных в ЭПС.

В комплексе Гольджи образуются лизосомы и синтезируются некоторые полисахариды.

Лизосомальная система и пероксисомы

Лизосомы – мембранные органеллы клеток животных и грибов, содержащие гидролитические ферменты и осуществляющие гидролитическое расщепление макромолекул (внутриклеточное пищеварение). Лизосомы представляют собой окружённые одинарной мембраной пузырьки, размеры которых в клетках животных колеблются от 0,2 до 0,5 мкм. В лизосомах содержится не менее 60 гидролитических ферментов, которые расщепляют все основные классы органических макромолекул.

Все ферменты лизосом активны лишь в кислой среде при значениях pH, близких 5,0. Количество лизосом в разных клетках варьирует от единичных до нескольких сотен, как например, в фагоцитах.

Завершающие этапы процесса внутриклеточного переваривания веществ, поглощённых клеткой, осуществляются в лизосомах.

Читать еще:  Как стать нотариусом

Лизосомы с помощью своих ферментов могут разрушать не только отдельные органеллы или клетки, но и целые органы (автолиз). Например, в процессе онтогенеза лягушки с помощью ферментов лизосом лизируются хвост и жабры головастика, а образующиеся при этом продукты распада используются для формирования органов взрослого животного.

Митохондрии – крупные мембранные органоиды клетки, которые можно различить в световой микроскоп. Митохондрии присутствуют во всех эукариотических клетках человека, кроме эритроцитов.

Они имеют обычно округлую, удлиненную или нитевидную формы. Количество митохондрий в клетке колеблется в широких пределах (от 1 до 100 тыс. и более) и зависит от потребностей клетки в энергии. Митохондрии имеют наружную и внутреннюю мембраны.

На внутренней поверхности увеличенного фрагмента кристы видны небольшие выпуклости, обращенные в митохондриальный матрикс, которые содержат ферментные системы, обеспечивающие процессы дыхания. Наружная мембрана гладкая и по своему составу сходна с плазмалеммой.

В матриксе содержатся кольцевая молекула митохондриальной ДНК (мтДНК), различные включения, а также молекулы мРНК, транспортной РНК (тРНК) и рибосомы, сходные по строению с рибосомами бактерий. Здесь же располагаются ферменты, превращающие пируват и жирные кислоты в ацетил-КоА, и ферменты реакций цикла Кребса.

Митохондриальная ДНК имеет не линейную, как в хромосомах ядра, а кольцевую форму. Главная функция митохондрий – синтез АТФ, основного источника энергии для обеспечения жизнедеятельности клетки. Поэтому митохондрии называют «энергетическими станциями» клетки.

Пластиды – это органоиды клеток растений и некоторых фотосинтезирующих простейших. У большинства животных и грибов пластид нет.

Пластиды делятся на несколько типов: хлоропласты, хромопласты, лейкопласты. Наиболее важный и известный – хлоропласт, содержащий зелёный пигмент хлорофилл, который обеспечивает процесс фотосинтеза.

Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.

Пластиды относятся к двумембранным органоидам, у них есть внешняя и внутренняя мембраны.

Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры, как тилакоиды, граны (стопки тилакоидов), ламелы – удлинённые тилакоиды, соединяющие соседние граны. Внутреннее содержимое пластид обычно называют стромой. В ней, помимо прочего, находятся крахмальные зёрна.

Считается, что в процессе эволюции пластиды появились аналогично митохондриям – путём внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами. Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Часть генов, управляющая их функционированием, находится как раз в ядре.

Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.

3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информационная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).

Читать еще:  Что такое лейкемия

Прокариоты и эукариоты – сравнение и особенности строения клеток

Прокариоты и эукариоты образуют надцарства в системе классификации живых организмов. Они составляют таксоны более низкого ранга – царства. Прокариоты создают царство бактерий, одноклеточных организмов. Эукариоты образуют 3 царства: грибы, растения и животные. Эти группы включают многоклеточные и одноклеточные организмы.

Прокариоты и эукариоты – основные понятия

Прокариоты – это доядерные одноклеточные организмы.

Именно они стояли у истоков эволюции, дали впоследствии ядерные организмы. Это бактерии.

Эукариоты – это ядерные клетки.

Они образуют живые организмы, состоящие из одной или множества клеток. Структура, содержащая ядро, дала все многообразие жизни.

Строение прокариотической клетки

Прокариоты устроены довольно просто. Размеры их очень малы – от 1 до 15 мкм. Следует отметить, что 1 мкм равен 0,001 мм. Отсюда становится понятным, насколько малы прокариоты.

Бактерии имеют разную форму:

кокки – шаровидные клетки;

бациллы – вытянутые палочки;

В зависимости от того, к какой группе относятся бактерии, они могут существовать по отдельности, или образовывать скопления. Например, стрептококки образуют цепь из нескольких кокков. Стафилококки образуют скопление, которое напоминает гроздь винограда.

Характерная особенность прокариот – отсутствие оформленного ядра. Также отсутствуют мембранные органоиды.

Генетический материал находится в одной хромосоме. В её состав входит одна ДНК, которая не соединяется с белками. Кольцевая ДНК размещена прямо в цитоплазме.

Цитоплазма заполняет внутреннее пространство. Все немногочисленные органоиды находятся в ней.

Ферменты, обеспечивающие жизнедеятельность, распределены во внутреннем пространстве, или находятся на внутренней стенке мембраны.

Внутри клетки откладываются запасные вещества: жиры, полисахариды, полифосфаты. Они могут расходоваться клеткой по мере необходимости.

Снаружи бактерия покрыта цитоплазматической мембраной. Сверху расположена клеточная стенка, состоящая из муреина. Это смесь полисахаридов и белковых молекул. Клеточная стенка прикрыта слизистой капсулой.

Цитоплазматическая мембрана образует впячивания – мезосомы. Они выполняют функции недостающих органоидов.

Бактерия может иметь жгутики и пили – органоиды движения в жидкой среде.

Плюсы и минусы прокариот

Прокариоты играют и положительную и отрицательную роль. В качестве примера негативного влияния, можно отметить заболевания, возбудителем которых являются бактерии: туберкулёз, холера, тиф и другие.

Характеризуя положительное значение бактерий, можно отметить:

приготовление кисломолочной продукции с помощью бродильных прокариот;

бактерии-симбионты, обитающие в других организмах, приносящие пользу;

бактерии-разрушители органического опада и другие.

Строение эукариот

Эукариотическая клетка, образуя одноклеточный организм, существует самостоятельно. Также она может с другими клетками образовывать многоклеточные организмы.

В соответствии с организмом, образованным клеткой, существуют некоторые различия в её строении. Эти различия не так велики. Больше можно отметить черт сходства.

Эукариотическая клетка покрыта цитоплазматической мембраной. Она имеет многочисленные поры, образует складки, впячивания и выпячивания, что позволяет осуществлять поступление веществ с помощью пиноцитоза и фагоцитоза.

Пиноцитоз – это поступление капель жидкости. Фагоцитоз – это поступление твёрдых частичек через мембрану.

Растительная клетка имеет ещё прочную целлюлозную оболочку.

Ядерная клетка имеет множество мембранных органоидов:

Прежде всего, это оформленное ядро. Оно хранит и воспроизводит наследственную информацию. Также ядро регулирует жизнедеятельность клетки.

Внутреннее пространство заполнено цитоплазмой – это среда, в которой идут все реакции и процессы. По цитоплазме перемещаются органоиды и вещества.

Эндоплазматическая сеть. Она бывает шероховатой, на ней идёт биосинтез белка. Жиры и углеводы синтезируются на гладкой сети.

Аппарат Гольджи – это совокупность уплощённых полостей, мешочков, цистерн. В нём упаковываются и хранятся вещества, которые клетка синтезирует.

Читать еще:  Как пишется правильно слово впридачу

Рибосомы – участвуют в образовании белка.

Митохондрии – накапливают энергию в виде АТФ.

Пластиды – есть только в клетках растений. Они обеспечивают процесс фотосинтеза, окраску цветов и плодов, а также способствуют накоплению органических веществ.

Вакуоли – присутствуют, как правило, в растительной клетке. Содержат клеточный сок, обеспечивает тургор клетки.

Лизосомы – отвечают за внутриклеточное пищеварение.

Клеточный центр или центриоли – присутствуют в клетке животных. Органоид принимает участие в делении клетки.

Цитоскелет – микротрубочки из белковых волокон. Они связаны с цитоплазматической мембраной, поддерживают определённую форму клетки.

Митохондрии и хлоропласты – это органоиды, состоящие из двух мембран. Поверхностная мембрана гладкая, внутренняя – формирует многочисленные выросты. Эти два органоида содержат свою ДНК.

Сходства и отличие прокариот и эукариот

Для прокариотов и эукариот характерны черты сходства и различия.

Какие органоиды отсутствуют у прокариот

Клетки одноклеточных и многоклеточных орга­ низмов поражают чрезвычайным разнообразием форм и размеров. Например, организм человека состоит при­ мерно из 200 видов клеток, которые специализируются на выполнении определенных функций и различаются морфологией. Размеры большинства эукариотических клеток ва­рьируют от нескольких до 100 мкм, а прокариотиче­ских — от 0,5 до 10 мкм.

ПРОКАРИОТИЧЕСКИЕ И ЭУКАРИОТИЧЕСКИЕ КЛЕТКИ

Каждая клетка состоит из цитоплазмы, погру­ женного в нее наследственного аппарата, и отделена от внешней среды плазматической мембраной, или плазмалеммой, не препятствующей процессу обмена ве­ ществ и энергии (рис. 1). Снаружи от мембраны у клетки может быть еще клеточная стенка, состоящая из раз­ личных веществ, которая служит для защиты клетки и является своего рода ее внешним скелетом.

Различают два основных типа организации клеток: прокариотиче­ ские и эукариотические.

Прокариотическая клетка не им еет ядра, ее наследственная инфор­мация не отделена от цитоплазмы мембранами. Область цитоплазмы, в которой хранится наследственная информация в прокариотической клетке, называют нуклеоидом. В цитоплазме прокариотических клеток встречается один вид органоидов — рибосомы, а окруженные мембра­ нами органоиды отсутствуют. Прокариотами являются бактерии и сине зеленые водоросли.

Эукариотическая клетка хотя бы на одной из стадий развития имеет ядро, в котором находится ДНК. Эукариотические клетки характеризуются наличием мембранных органои­ дов. К эукариотическим организмам относят растения, животные и грибы. Большинство прокариот является одноклеточными организмами, а эукариот — много­ клеточными.

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА СТРОЕНИЯ КЛЕТОК РАСТЕНИЙ, ЖИВОТНЫХ, БАКТЕРИЙ И ГРИБОВ

Клетки растений, животных, грибов и бактерий обладают рядом особенностей. По способу питания растения и часть бактерий относятся к автотрофам, а животные, грибы и осталь­ные бактерии являются гетеротрофами. Только клетки растений содержат специфические двумембранные органоиды — пластиды, в том числе хлоропласты, которые обусловливают способность к фотосинтезу. В растительных клетках содержатся крупные цен­ тральные вакуоли, наполненные клеточным соком. В клетках животных вакуоли пищева­ рительные и сократительные, у грибов и бактерий встречаются редко. Основным запасным веществом у растений является крахмал, у животных и грибов — гликоген, а у бактерий — волютин.

Отличительный признак разных групп организмов — организация поверхностного аппа­ рата. У клеток животных клеточная стенка отсутствует, а плазматическая мембрана покры­ та тонким гликокаликсом. У остальных групп есть клеточная стенка. Химическая природа основного вещества клеточной стенки у различных групп живых организмов неодинакова: у растений это целлюлоза, у грибов — хитин, а у бактерий — муреин.

Видео YouTube

Источники:

https://resh.edu.ru/subject/lesson/3847/main/
https://nauka.club/biologiya/prokarioty-i-eukarioty.html
https://www.sites.google.com/site/biologiaege/prokarioty-eukarioty-kletki-zivyh-organizmov

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов:

Для любых предложений по сайту: [email protected]