Какие орбиты бывают у спутников
Орбиты вокруг Земли
Земля, как любое космическое тело, обладает собственным гравитационным полем и рядом расположенными орбитами, на которых могут находиться тела и объекты разной величины. Чаще всего под ними подразумеваются Луна и международная космическая станция. Первая ходит по своей собственной орбите, а МКС – по низкой околоземной. Существует несколько орбит, которые между собой отличаются удаленностью от Земли, относительным расположением относительно планеты и направлением вращения.
Орбиты искусственных спутников Земли
На сегодняшний день в ближайшем околоземном космическом пространстве находится множество объектов, которые являются результатами человеческой деятельности. В основном, это искусственные спутники, служащие для обеспечения связи, однако есть и немало космического мусора. Одним из самых известных искусственных спутников Земли является Международная космическая станция.
ИСЗ движутся по трем основным орбитам: экваториальной (геостационарной), полярной и наклонной. Первая полностью лежит в плоскости окружности экватора, вторая строго ей перпендикулярна, а третья располагается между ними.
Геосинхронная орбита
Название этой траектории связано с тем, что тело, движущееся по ней, имеет скорость, равную звездному периоду вращения Земли. Геостационарная орбита – это частный случай геосинхронной орбиты, которая лежит в той же плоскости, что и земной экватор.
При наклонении не равном нулю и нулевом эксцентриситете спутник, при наблюдении с Земли, описывает в течение суток в небе восьмерку.
Первый спутник на геосинхронной орбите – американский Syncom-2, выведенный на нее в 1963 году. Сегодня в некоторых случаях размещение спутников на геосинхронной орбите происходит по причине того, что ракета-носитель не может вывести их на геостационарную.
Геостационарная орбита
Данная траектория имеет такое название по той причине, что, несмотря на постоянное движение, объект, на ней находящийся, остается статичным относительно земной поверхности. Место, в котором находится объект, называется точкой стояния.
Спутники, выведенные на такую орбиту, часто используются для передачи спутникового телевидения, потому что статичность позволяет единожды направить на него антенну и долгое время оставаться на связи.
Высота расположения спутников на геостационарной орбите равна 35 786 километрам. Поскольку все они находятся прямо над экватором, для обозначения позиции называют только меридиан, например, 180.0˚E Интелсат 18 или 172.0˚E Eutelsat 172A.
Приблизительный радиус орбиты равен
42 164 км, длина – около 265 000 км, а орбитальная скорость – примерно 3, 07 км/с.
Высокая эллиптическая орбита
Высокой эллиптической орбитой называют такую траекторию, высота которой в перигее в несколько раз меньше, чем в апогее. Выведение спутников на такие орбиты имеет ряд важных преимущества. Например, одной такой системы может быть достаточно для обслуживания всей России или, соответственно, группы государств с равной суммарной площадью. Кроме того, системы ВЭО на высоких широтах более функциональные, чем геостационарные спутники. А еще вывод спутника на высокую эллиптическую орбиту обходится приблизительно в 1,8 раза дешевле.
Крупные примеры систем, работающих на ВЭО:
- Космические обсерватории, запущенные NASA и ESA.
- Спутниковое радио Sirius XM Radio.
- Спутниковая связь Меридиан, -З и –ЗК, Молния-1Т.
- Спутниковая система коррекции GPS.
Низкая околоземная орбита
Это одна из самых низких орбит, которая в зависимости от разных обстоятельств может иметь высоту 160-2000 км и период обращения, соответственно, 88-127 минут. Единственным случаем, когда НОО была преодолена пилотируемыми космическими аппаратами – это программа Апполон с высадкой американских астронавтов на луну.
Большая часть используемых сейчас или использованных когда-либо ранее искусственных земных спутников работали на низкой околоземной орбите. По этой же причине в этой зоне сейчас расположена основная доля космического мусора. Оптимальная орбитальная скорость для спутников, находящихся на НОО, в среднем, равна 7,8 км/с.
Примеры искусственных спутников на НОО:
- Международная Космическая станция (400 км).
- Телекоммуникационные спутники самых разных систем и сетей.
- Разведывательные аппараты и спутники-зонды.
Обилие космического мусора на орбите – главная современная проблема всей космической индустрии. Сегодня ситуация такова, что вероятность столкновения различных объектов на НОО растет. А это, в свою очередь, ведет к разрушению и образованию на орбите еще большего числа фрагментов и деталей. Пессимистичные прогнозы говорят о том, что запущенный Принцип домино может полностью лишить человечество возможности осваивать космос.
Низкая опорная орбита
Низкой опорной принято называть ту орбиту аппарата, которая предусматривает изменение наклона, высоты или другие существенные изменения. Если же у аппарата нет двигателя и он не совершает маневры, его орбиту называют низкой околоземной.
Интересно, что российские и американские баллистики рассчитывают её высоту по разному, потому что первые основываются на эллиптической модели Земли, а вторые – на сферической. Из-за этого есть разница не только в высоте, но и в положении перигея и апогея.
Классификация околоземных орбит
Околоземные орбиты, на которые запускаются космические аппараты, принято делить на следующие категории.
Низкие околоземные орбиты (НОО) располагаются на высоте от 160 до 2000 км над поверхностью нашей планеты (в первом случае период обращения равен примерно 88 минут, во втором – 127 минут). Объекты, движущиеся на высотах менее 200 км, испытывают заметное торможение в самых высоких слоях атмосферы и достаточно быстро падают на Землю. Поэтому высоты менее 300 км для спутников обычно не применяются — время существования на столь низких орбитах сравнительно невелико. Верхнее значение определяется внутренней границей радиационных поясов с повышенной концентрацией заряженных частиц, способных повредить электронное оборудование и нанести серьезный ущерб здоровью космонавтов.
Все пилотируемые космические полеты — за исключением девяти экспедиций к Луне в рамках американской программы Apollo — проходили в области НОО либо были суборбитальными. Наибольшей высоты (опять же, не считая лунных миссий) достиг в сентябре 1966 г. экипаж корабля Gemini 11, имевшего апогей 1374 км. В данный момент все обитаемые орбитальные станции и подавляющее большинство прочих искусственных спутников Земли находятся на низких орбитах. Также на них сосредоточена большая часть космического мусора.
Тангенциальная скорость объекта (перпендикулярная к направлению на центр Земли), необходимая для нахождения на стабильной НОО, составляет примерно 7,8 км/с, уменьшаясь с ростом высоты. Для достижения таких орбит при старте с земной поверхности требуется ракета-носитель с характеристической скоростью от 9,4 км/с — дополнительные 1,5-1,6 км/с «расходуются» на аэродинамические и гравитационные потери.
Многие спутники дистанционного зондирования Земли (ДЗЗ) и аппараты военной разведки выводят на НОО, чтобы вести съемку наземных объектов с как можно более близкого расстояния и достичь максимально возможного разрешения. Эти же орбиты занимают некоторые телекоммуникационные спутники, так как на такой высоте им требуются менее мощные усилители сигнала. Однако каждый подобный аппарат движется достаточно быстро и охватывает ограниченный участок земной поверхности, поэтому в таком случае создаются целые сети («созвездия») из множества спутников — например, в спутниковой телефонной системе Iridium их более 70.
Часто используемая разновидность ННО — солнечно-синхронная орбита (ССО), иногда именуемая гелиосинхронной — рассчитывается таким образом, чтобы объект, находящийся на ней, проходил над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время. Обычно такие орбиты имеют высоту порядка 800 км и наклонение около 90° (их плоскости почти перпендикулярны к плоскости земного экватора). Если спутник на ССО ведет съемку поверхности, на всех его проходах угол падения солнечных лучей окажется примерно одинаковым. Например, спутник LandSat-7 может пересекать экватор 15 раз в сутки, каждый раз в 10:00 местного времени. Для аппаратов, ведущих наблюдения за Солнцем или требующих стабильного электроснабжения за счет использования фотогальванических панелей, можно подобрать орбитальные параметры, при которых они практически не будут попадать в тень Земли. Орбиты выбираются таким образом, чтобы солнечная и лунная гравитация вызывала их прецессию в восточном направлении на 360° в год (чуть меньше чем на 1° в сутки), компенсируя вращение нашей планеты вокруг Солнца.
После окончания функционирования искусственных космических объектов осуществляется их увод на орбиту захоронения, как правило, лежащую выше их рабочей орбиты (чтобы дополнительно ослабить влияние атмосферы). В частности, низкоорбитальные разведывательные спутники с ядерной энергетической установкой – в т.ч. радиолокационные – отправляют на высоту порядка 650-1000 км, где расчетный срок их существования составляет порядка 2 тыс. лет. Часто туда отправляется не сам спутник, а только активная зона реактора. Считается, что за этот срок в ней распадутся самые вредные радиоактивные изотопы. либо же человечество додумается, как оптимальнее утилизировать опасную технику.
Выше 2000 км находится зона так называемых средних околоземных орбит. Их использует сравнительно малое количество космических аппаратов – в основном научно-исследовательских и навигационных (в частности, спутники системы GPS движутся по орбитам высотой 20 350 км с периодом обращения 12 часов). Главная сложность в этой области пространства связана с радиационными поясами и содержащимися в них высокоэнергетическими заряженными частицами.
Верхнюю границу «средней» зоны отмечают геосинхронные орбиты (ГСО) — они имеют радиус 42 164 км, что соответствует высоте над уровнем моря 35 786 км. Период обращения объектов на таких орбитах равен звездным суткам (23 часа 56 минут 4,1 секунды). Их частным случаем является геостационарная орбита — круговая и лежащая в плоскости земного экватора (0° широты). Объект, движущийся по ней, фактически оказывается «висящим» над одной и той же точкой Земли. Поэтому спутниковая антенна, однажды направленная на него, не будет требовать дальнейшего наведения. Очевидно, такие орбиты особенно удобны для телекоммуникационных спутников, а также специализированных метеорологических обсерваторий, ведущих мониторинг определенного региона.
Если орбита наклонена к экватору и имеет небольшой эксцентриситет, то при наблюдении с Земли спутник в течение суток будет описывать на небе «восьмерку». В некоторых случаях «восьмерка» может выродиться в эллипс (как у спутников серии Canyon), а при значительном эксцентриситете и нулевом наклонении — в отрезок прямой, лежащий в экваториальной плоскости.
Идеальная ГСО практически недостижима, так как аппараты на ней испытывают также притяжение со стороны Луны и Солнца, воздействие земного магнитного поля, солнечного ветра и другие посторонние возмущения, «сталкивающие» их с точки стояния. Поэтому на борту геостационарных спутников предусмотрена корректирующая двигательная установка с запасом топлива. Кроме того, такие спутники не видны из местностей в окрестностях полюсов, простирающихся приблизительно до 810 северной и южной широты.
Дважды в году (вблизи весеннего и осеннего равноденствий) возникают ситуации, когда телекоммуникационные аппараты на ГСО проецируются на солнечный диск. В это время связь через них затруднена, а иногда вообще невозможна.
Геостационарная орбита захоронения расположена примерно на 200 км выше «стандартной» ГСО. Туда отправляют спутники, выработавшие свой ресурс или исчерпавшие запасы горючего для бортовых двигателей. Далее до расстояния порядка 300 тыс. км (точнее, до точки Лагранжа L системы «Земля-Луна») находится область высоких околоземных орбит. Пока они используются довольно редко – в частности, в этой области пространства сейчас работает космический телескоп TESS (Transiting Exoplanet Survey Satellite).
Источник: Журнал – “Вселенная, пространство и время”
Присоединяйтесь к нам и узнавайте больше интересных фактов о нашем Космическом пространстве.
Орбиты спутников связи
Орбиты, на которых размещаются спутниковые ретрансляторы, подразделяют на три класса:
(adsbygoogle = window.adsbygoogle || []).push(<>);
Экваториальные, 2 – наклонные, 3 – полярные
Важной разновидностью экваториальной орбиты является геостационарная орбита, на которой спутник вращается с угловой скоростью, равной угловой скорости Земли, в направлении, совпадающем с направлением вращения Земли. Очевидным преимуществом геостационарной орбиты является то, что приемник в зоне обслуживания «видит» спутник постоянно. Однако геостационарная орбита одна, и все спутники вывести на неё невозможно. Другим её недостатком является больша́я высота, а значит, и бо́льшая цена вывода спутника на орбиту. Кроме того, спутник на геостационарной орбите неспособен обслуживать земные станции в приполярной области.
Наклонная орбита позволяет решить эти проблемы, однако, из-за перемещения спутника относительно наземного наблюдателя необходимо запускать не меньше трех спутников на одну орбиту, чтобы обеспечить круглосуточный доступ к связи.
Полярная орбита — предельный случай наклонной.
При использовании наклонных орбит земные станции оборудуются системами слежения, осуществляющими наведение антенны на спутник. Станции, работающие со спутниками, находящимися на геостационарной орбите, как правило, также оборудуются такими системами, чтобы компенсировать отклонение от идеальной геостационарной орбиты. Исключение составляют небольшие антенны, используемые для приема спутникового телевидения: их диаграмма направленности достаточно широкая, поэтому они не чувствуют колебаний спутника возле идеальной точки. Особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала.
Типовая схема организации услуг спутниковой связи
Оператор спутникового сегмента создает за счет собственных средств спутник связи, размещая заказ на изготовление спутника у одного из производителей спутников, и осуществляет его запуск и обслуживание. После выведения спутника на орбиту оператор спутникового сегмента начинает предоставление услуг по сдаче в аренду частотного ресурса спутника-ретранслятора компаниям-операторам услуг спутниковой связи.
Компания-оператор услуг спутниковой связи заключает договор с оператором спутникового сегмента на использование (аренду) емкостей на спутнике связи, используя его в качестве ретранслятора с большой территорией обслуживания. Оператор услуг спутниковой связи выстраивает наземную инфраструктуру своей сети на определенной технологической платформе, выпускаемой компаниями-производителями наземного оборудования для спутниковой связи.
4. Сферы применения спутниковой связи:
Магистральная спутниковая связь: Изначально возникновение спутниковой связи было продиктовано потребностями передачи больших объёмов информации. С течением времени доля передачи речи в общем объёме магистрального трафика постоянно снижалась, уступая место передаче данных. С развитием волоконно-оптических сетей последние начали вытеснять спутниковую связь с рынка магистральной связи.
Системы VSAT: системы VSAT (Very Small Aperture Terminal — терминал с очень маленькой апертурой антенны) предоставляют услуги спутниковой связи клиентам (как правило, небольшим организациям), которым не требуется высокая пропускная способность канала. Скорость передачи данных для VSAT-терминала обычно не превышает 2048 кбит/с. Слова «очень маленькая апертура» относятся к размерам антенн терминалов по сравнению с размерами более старых антенн магистральных систем связи. VSAT-терминалы, работающие в C-диапазоне, обычно используют антенны диаметром 1,8-2,4 м, в Ku-диапазоне — 0,75-1,8 м. В системах VSAT применяется технология предоставления каналов по требованию.
Системы подвижной спутниковой связи: особенностью большинства систем подвижной спутниковой связи является маленький размер антенны терминала, что затрудняет прием сигнала.
4.1.Принципы организации спутниковой связи VSAT:
Основной элемент спутниковой сети VSAT — ЦУС. Именно Центр Управления Сетью обеспечивает доступ клиентского оборудования с сети интернет, телефонной сети общего пользования, другим терминалам сети VSAT, реализует обмен трафиком внутри корпоративной сети клиента. ЦУС имеет широкополосное подключение к магистральным каналам связи, предоставляемым магистральными операторами и обеспечивает передачу информации от удаленного VSAT-терминала во внешний мир.
4.2.Принципы организации подвижной спутниковой связи:
Для того, чтобы мощность сигнала, достигающего мобильного спутникового приемника, была достаточной, применяют одно из двух решений:
Спутники располагаются на геостационарной орбите. Поскольку эта орбита удалена от Земли на расстояние 35786 км, на спутник требуется установить мощный передатчик. Множество спутников располагается на наклонных или полярных орбитах. При этом требуемая мощность передатчика не так высока, и стоимость вывода спутника на орбиту ниже. Однако такой подход требует не только большого числа спутников, но и разветвленной сети наземных коммутаторов.
Оборудование клиента (мобильные спутниковые терминалы, спутниковые телефоны) взаимодействует с внешним миром или друг с другом посредством спутника-ретранслятора и станций сопряжения оператора услуг мобильной спутниковой связи, обеспечивающих подключение к внешним наземным каналам связи (телефонной сети общего пользования, сети интернет и пр.)
Источники:
https://xn—-8sbiecm6bhdx8i.xn--p1ai/%D0%BE%D1%80%D0%B1%D0%B8%D1%82%D1%8B%20%D0%97%D0%B5%D0%BC%D0%BB%D0%B8.html
https://zen.yandex.ru/media/id/5b82a8aac04fcc00a94e6180/5ba0bcebd282ff00aa27eb0c
https://helpiks.org/9-68520.html