Как тяготение тел зависит от их массы
Как тяготение тел зависит от их массы
Человеку давно уже известна сила, заставляющая все тела падать на Землю. Но до XVII в. считалось, что только Земля обладает особым свойством притягивать к себе тела, находящиеся вблизи ее поверхности. В 1667 г. Ньютон высказал предположение, что вообще между всеми телами действуют силы взаимного притяжения. Он назвал эти силы силами всемирного тяготения.
Ньютон открыл законы движения тел. Согласно этим законам движение с ускорением возможно только под действием силы. Так как падающие тела движутся с ускорением, то на них должна действовать сила, направленная вниз, к Земле.
Но нет оснований считать, что только Земля наделена исключительным свойством притягивать к себе тела.
Почему же мы не замечаем взаимного притяжения между окружающими нас телами? Может быть, это объясняется тем, что силы притяжения между ними слишком малы?
Ньютону удалось показать, что сила притяжения между телами зависит от масс обоих тел и, как оказалось, достигает заметной величины только тогда, когда взаимодействующие тела (или хотя бы одно из них) обладают достаточно большой массой.
Ускорение свободного падения отличается той любопытной особенностью, что оно в данном месте одинаково для всех тел, для тел любой массы. На первый взгляд это очень странное свойство. Ведь из формулы, выражающей второй закон Ньютона,
следует, что ускорение тела должно быть тем больше, чем меньше его масса. Тела с малой массой должны падать с большим ускорением, чем тела, у которых масса велика. Опыт же показал (см. § 20), что ускорения свободно падающих тел не зависят от их масс. Единственное объяснение, которое можно найти этому удивительному
факту, заключается в том, что сама сила с которой Земля притягивает тело, пропорциональна его массе т.
Действительно, в этом случае увеличение массы например, вдвое приведет и к увеличению силы тоже вдвое, а ускорение, которое равно отношению останется неизменным. Ньютон и сделал этот единственно правильный вывод: сила всемирного тяготения пропорциональна массе того тела, на которое она действует. Но ведь тела притягиваются взаимно. А по третьему закону Ньютона на оба притягивающихся тела действуют одинаковые по абсолютному значению силы. Значит, сила взаимного притяжения должна быть пропорциональна массам каждого из притягивающихся тел. Тогда оба тела будут получать ускорения, которые не зависят от их масс.
Если сила пропорциональна массам каждого из взаимодействующих тел, то это означает, что она пропорциональна произведению масс обоих тел.
От чего еще зависит сила взаимного притяжения двух тел? Ньютон предположил, что она должна зависеть от расстояния между телами. Из опыта хорошо известно, что вблизи Земли ускорение свободного падения равно и оно одинаково для тел, падающих с высоты 1, 10 или 100 м. Но отсюда еще нельзя заключить, что ускорение не зависит от расстояния до Земли. Ньютон считал, что отсчитывать расстояния надо не от поверхности Земли, а от ее центра. Но радиус Земли равен 6400 км. Понятно поэтому, что несколько десятков или сотен метров над поверхностью Земли не могут заметно изменить ускорение свободного падения.
Чтобы выяснить, как влияет расстояние между телами на силу их взаимного притяжения, нужно знать, с каким ускорением движутся тела, удаленные от поверхности Земли на большие расстояния.
Ясно, что измерить ускорение свободного падения по вертикали тел, находящихся на высоте в несколько тысяч километров над поверхностью Земли, трудно. Удобнее измерить центростремительное ускорение тела, движущегося вокруг Земли по окружности под действием силы притяжения к Земле. Вспомним, что таким же приемом мы пользовались при изучении силы упругости. Мы измеряли центростремительное ускорение цилиндра, движущегося по окружности под действием этой силы.
В изучении силы всемирного тяготения сама природа пришла на помощь физикам и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли. Таким телом является естественный спутник Земли — Луна. Ведь если верно предположение Ньютона, то надо считать, что центростремительное ускорение Луне при ее движении по окружности вокруг Земли сообщает сила ее притяжения к Земле. Если бы сила тяготения между Луной и Землей не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение
свободного падения тел вблизи поверхности Земли. В действительности центростремительное ускорение, с которым движется Луна по орбите, равно, как мы уже знаем (см. упр. 16, задачу 9), . А это приблизительно в 3600 раз меньше, чем ускорение падающих тел вблизи Земли. В то же время известно, что расстояние от центра Земли до центра Луны равно 384 000 км. Это в 60 раз больше радиуса Земли, т. е. расстояния от центра Земли до ее поверхности. Таким образом, увеличение расстояния между притягивающимися телами в 60 раз приводит к уменьшению ускорения в 602 раз. Отсюда можно заключить, что ускорение, сообщаемое телам силой всемирного тяготения, а значит, и сама эта сила обратно пропорциональны квадрату расстояния между взаимодействующими телами.
К такому заключению и пришел Ньютон.
Можно, следовательно, написать, что два тела массами притягиваются друг к другу с силой абсолютное значение которой выражается формулой
где — расстояние между телами, у — коэффициент пропорциональности, одинаковый для всех тел в природе. Называется этот коэффициент постоянной всемирного тяготения или гравитационной постоянной.
Приведенная формула выражает закон всемирного тяготения, открытый Ньютоном:
Все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.
Под действием силы всемирного тяготения движутся и планеты вокруг Солнца, и искусственные спутники вокруг Земли.
Но что надо понимать под расстоянием между взаимодействующими телами? Возьмем два тела произвольной формы (рис. 109). Сразу возникает вопрос: какое расстояние нужно подставлять в формулу закона всемирного тяготения? Расстояние между
самыми дальними точками поверхности обоих тел или же, наоборот, расстояние между ближайшими точками? А может быть, расстояние между какими-нибудь другими точками тела?
Оказывается, формула (1), выражающая закон всемирного тяготения, справедлива, когда расстояние между телами настолько велико по сравнению с их размерами, что тела можно считать материальными точками. Материальными точками при вычислении силы тяготения между ними можно считать Землю и Луну, планеты и Солнце.
Если тела имеют форму шаров, то даже в том случае, когда их размеры сравнимы с расстоянием между ними, они притягиваются между собой как материальные точки, расположенные в центрах шаров (рис. 110). В этом случае — это расстояние между центрами шаров.
Формулой (1) можно также пользоваться при вычислении силы притяжения между шаром большого радиуса и телом произвольной формы небольших размеров, находящимся близко к поверхности шара (рис. 111). Тогда размерами тела можно пренебречь по сравнению с радиусом шара. Именно так мы поступаем, когда рассматриваем притяжение различных тел к земному шару.
Сила тяготения — это еще один пример силы, которая зависит от положения (координат) того тела, на которое эта сила действует, относительно того тела, которое оказывает действие. Ведь сила тяготения зависит от расстояния между телами.
Закон всемирного тяготения. Сила тяжести
Два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:
Описание закона всемирного тяготения
Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:
Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.
С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).
Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.
Сила тяжести
Частным случаем проявления гравитационных сил является сила тяжести.
Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).
Если на тело действует сила тяжести, то тело совершает свободное падение. Вид траектории движения зависит от направления и модуля начальной скорости.
С действием силы тяжести мы сталкиваемся каждый день. Камень, брошенный в горизонтальном направлении, через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.
Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:
откуда ускорение свободного падения:
Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .
Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .
Примеры решения задач
откуда масса Земли:
В системе Си радиус Земли м.
Подставив в формулу численные значения физических величин, оценим массу Земли:
Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:
где и массы спутника и Земли соответственно.
Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:
где радиус Земли.
Таким образом, сила гравитационного притяжения в данном случае:
Подставив значение гравитационной силы в формулу для второго закона Ньютона и учитывая, что ускорение спутника – это центростремительное ускорение (спутник движется по круговой орбите), получим:
откуда скорость спутника:
Время, за которое спутник совершит один полный оборот вокруг Земли, — это период его обращения по круговой орбите, который равен:
Источники:
https://scask.ru/m_book_phis8.php?id=47
https://ru.solverbook.com/spravochnik/mexanika/dinamika/zakon-vsemirnogo-tyagoteniya/