31 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как называют и обозначают многоугольник

Многоугольники

Многоугольник – это геометрическая фигура, ограниченная замкнутой ломаной линией, не имеющей самопересечений.

Звенья ломаной называются сторонами многоугольника, а её вершины – вершинами многоугольника.

Углами многоугольника называются внутренние углы, образованные соседними сторонами. Число углов многоугольника равно числу его вершин и сторон.

Многоугольникам даются названия по количеству сторон. Многоугольник с наименьшим количеством сторон называется треугольником, он имеет всего три стороны. Многоугольник с четырьмя сторонами называется четырёхугольником, с пятью – пятиугольником и т. д.

Обозначение многоугольника составляют из букв, стоящих при его вершинах, называя их по порядку (по часовой или против часовой стрелки). Например, говорят или пишут: пятиугольник ABCDE :

В пятиугольнике ABCDE точки A, B, C, D и E – это вершины пятиугольника, а отрезки AB, BC, CD, DE и EA – стороны пятиугольника.

Выпуклые и вогнутые

Многоугольник называется выпуклым, если ни одна из его сторон, продолженная до прямой линии, его не пересекает. В обратном случае многоугольник называется вогнутым:

Периметр

Сумма длин всех сторон многоугольника называется его периметром.

Периметр многоугольника ABCDE равен:

Если у многоугольника равны все стороны и все углы, то его называют правильным. Правильными многоугольниками могут быть только выпуклые многоугольники.

Диагональ

Диагональ многоугольника – это отрезок, соединяющий вершины двух углов, не имеющих общей стороны. Например, отрезок AD является диагональю:

Единственным многоугольником, который не имеет ни одной диагонали, является треугольник, так как в нём нет углов, не имеющих общих сторон.

Если из какой-нибудь вершины многоугольника провести все возможные диагонали, то они разделят многоугольник на треугольники:

Треугольников будет ровно на два меньше, чем сторон:

где t – это количество треугольников, а n – количество сторон.

Разделение многоугольника на треугольники с помощью диагоналей используется для нахождения площади многоугольника, так как чтобы найти площадь какого-нибудь многоугольника, нужно разбить его на треугольники, найти площадь этих треугольников и полученные результаты сложить.

Многоугольник

Замкнутая ломаная линия. Подробнее, М. — линия, которая получается, если взять n любых точек A1, A2, . An и соединить прямолинейным отрезком каждую из них с последующей, а последнюю — с первой (см. рис. 1, а). Точки A1, A2, . An называются вершинами М., а отрезки A1A2, А2А3, . An-1An, AnA1 — его сторонами. Далее рассматриваются только плоские М. (т. е. предполагается, что М. лежит в одной плоскости). М. может сам себя пересекать (см. рис. 1, б), причём точки самопересечения могут не быть его вершинами.

Существуют и другие точки зрения на то, что считать М. Многоугольником можно называть связную часть плоскости, вся граница которой состоит из конечного числа прямолинейных отрезков, называемых сторонами многоугольника. М. в этом смысле может быть и многосвязной частью плоскости (см. рис. 1, г), т. е. такой М. может иметь «многоугольные дыры». Рассматриваются также бесконечные М. — части плоскости, ограниченные конечным числом прямолинейных отрезков и конечным числом полупрямых.

Читать еще:  Как научиться бросать нож

Дальнейшее изложение опирается на данное выше первое определение М. Если М. не пересекает сам себя (см., например, рис. 1, а и б), то он разделяет совокупность всех точек плоскости, на нем не лежащих, на две части — конечную (внутреннюю) и бесконечную (внешнюю) в том смысле, что если две точки принадлежат одной из этих частей, то их можно соединить друг с другом ломаной, не пересекающей М., а если разным частям, то нельзя. Несмотря на совершенную очевидность этого обстоятельства, строгий его вывод из аксиом геометрии довольно труден (т. н. теорема Жордана для М.). Внутренняя по отношению к М. часть плоскости имеет определённую площадь. Если М. — самопересекающийся, то он разрезает плоскость на определённое число кусков, из которых один бесконечный (называемый внешним по отношению к М.), а остальные конечные односвязные (называются внутренними), причём граница каждого из них есть некоторый самонепересекающийся М., стороны которого есть целые стороны или части сторон, а вершины — вершины или точки самопересечения данного М. Если каждой стороне М. приписать направление, т. е. указать, какую из двух определяющих её вершин мы будем считать её началом, а какую — концом, и притом так, чтобы начало каждой стороны было концом предыдущей, то получится замкнутый многоугольный путь, или ориентированный М. Площадь области, ограниченной самопересекающимся ориентированным М., считается положительной, если контур М. обходит эту область против часовой стрелки, т. е. внутренность М. остаётся слева от идущего по этому пути, и отрицательной — в противоположном случае. Пусть М. — самопересекающийся и ориентированный; если из точки, лежащей во внешней по отношению к нему части плоскости, провести прямолинейный отрезок к точке, лежащей внутри одного из внутренних его кусков, и М. пересекает этот отрезок р раз слева направо и q раз справа налево, то число рq (целое положительное, отрицательное или нуль) не зависит от выбора внешней точки и называется коэффициентом этого куска. Сумма обычных площадей этих кусков, помноженных на их коэффициенты, считается «площадью» рассматриваемого замкнутого пути (ориентированного М.). Так определяемая «площадь замкнутого пути» играет большую роль в теории математических приборов (планиметр и др.); она получается там обычно в виде интеграла (в полярных координатах ρ, ω) или ∮ydx (в декартовых координатах х, у), где конец радиус-вектора ρ или ординаты y один раз обегает этот путь.

Сумма внутренних углов любого самонепересекающегося М. с n сторонами равна (n — 2)180°. М. называется выпуклым (см. рис. 1, а), если никакая сторона М., будучи неограниченно продолженной, не разрезает М. на две части. Выпуклый М. можно охарактеризовать также следующим свойством: прямолинейный отрезок, соединяющий любые две точки плоскости, лежащие внутри М., не пересекает М. Всякий выпуклый М. — самонепересекающийся, но не наоборот. Например, на рис. 1, б изображен самонепересекающийся М., который не является выпуклым, т. к. отрезок PQ, соединяющий некоторые его внутренние точки, пересекает М.

Читать еще:  Где моя посылка

Важнейшие М.: треугольники, в частности прямоугольные, равнобедренные, равносторонние (правильные); четырёхугольники, в частности трапеции, параллелограммы, ромбы, прямоугольники, квадраты. Выпуклый М. называется правильным, если все его стороны равны и все внутренние углы равны. В древности умели по стороне или радиусу описанного круга строить при помощи циркуля и линейки правильные М. только в том случае, если число сторон М. равно m = 3 · 2 n , 4 · 2 n ,5 · 2 n , 3 · 5 · 2 n , где n — любое положительное число или нуль. Немецкий математик К. Гаусс в 1801 показал, что можно построить при помощи циркуля и линейки правильный М., когда число его сторон имеет вид: m = 2 n · p1 · p2 · . · pk, где p1, p2, . pk — различные простые числа вида (s — целое положительное число). До сих пор известны только пять таких р: 3, 5, 17, 257, 65537. Из теории Галуа (см. Галуа теория) следует, что никаких других правильных М., кроме указанных Гауссом, построить при помощи циркуля и линейки нельзя. Т. о., построение возможно при m = 3, 4, 5, 6, 8, 10, 12, 15 16, 17, 20, 24, 32, 34, . и невозможно при m = 7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, .

В приведённой ниже таблице указаны радиус описанной окружности, радиус вписанной окружности и площадь правильного n-yгольника (для n = 3, 4, 5, 6, 8, 10), сторона которого равна k.

Многоугольник

Многоуго́льник — это геометрическая фигура, обычно определяется как замкнутая ломаная,имеющая больше одного угла.

Существуют три различных варианта определения многоугольника:

  • Плоская замкнутая ломаная;
  • Плоская замкнутая ломаная без самопересечений;
  • Часть плоскости, ограниченная замкнутой ломаной.

В любом случае, вершины ломаной называются вершинами многоугольника, а отрезки — сторонами многоугольника.

Содержание

Связанные определения

  • Вершины многоугольника называются соседними, если они являются концами одной из его сторон.
  • Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями.
  • Углом (или внутренним углом) многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, и находящийся во внутренней области многоугольника. В частности, угол может превосходить 180°, если многоугольник невыпуклый.
  • Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разность между 180° и внутренним углом, он может принимать значения от -180° до 180°.

Виды многоугольников

  • Многоугольник с тремя вершинами называется треугольником, с чётырьмя — четырёхугольником, с пятью — пятиугольником и т. д.
    • Многоугольник с n вершинами называется n-угольником.
  • Плоским многоугольником называется фигура, которая состоит из многоугольника и ограниченной им конечной части площади.
  • Многоугольник называют выпуклым, если выполнено одно из следующих (эквивалентных) условий:
    1. он лежит по одну сторону от любой прямой, соединяющей его соседние вершины. (то есть продолжения сторон многоугольника не пересекают других его сторон);
    2. он является пересечением (то есть общей частью) нескольких полуплоскостей;
    3. Каждая диагональ лежит внутри многоугольника;
    4. любой отрезок с концами в точках, принадлежащих многоугольнику, целиком ему принадлежит.
  • Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и правильный пятиугольник.
    • Правильный многоугольник с самопересечениями называется звёздчатым, например, правильные пятиконечная и восьмиконечная звёзды.
  • Выпуклый многоугольник называется вписанным в окружность, если все его вершины лежат на одной окружности.
  • Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.
Читать еще:  Как правильно планировать ремонт в квартире

Свойства

  • Сумма внутренних углов плоского выпуклого n-угольника равна .
  • Число диагоналей всякого -угольника равно .

Вариации и обобщения

  • Многогранник — обобщение многоугольника в размерности три, поверхность которая составлена из многоугольников или тело ей ограниченное.
  • Выпуклый многоугольник
  • Правильный многоугольник

Wikimedia Foundation . 2010 .

Смотреть что такое “Многоугольник” в других словарях:

многоугольник — многоугольник … Орфографический словарь-справочник

МНОГОУГОЛЬНИК — (на плоскости) геометрическая фигура, ограниченная замкнутой ломаной линией, звенья которой называются сторонами многоугольника, а их концы вершинами многоугольника. По числу вершин различают треугольники, четырехугольники и т. д. Многоугольник… … Большой Энциклопедический словарь

МНОГОУГОЛЬНИК — МНОГОУГОЛЬНИК, плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах). Они называются в соответствии с числом сторон или вершин: ТРЕУГОЛЬНИК (трехсторонний); ЧЕТЫРЕХУГОЛЬНИК… … Научно-технический энциклопедический словарь

многоугольник — полигон Словарь русских синонимов. многоугольник сущ., кол во синонимов: 12 • восьмиугольник (3) • … Словарь синонимов

МНОГОУГОЛЬНИК — МНОГОУГОЛЬНИК, многоугольника, муж. (мат.). Плоская фигура, ограниченная тремя, четырьмя и т.д. прямыми линиями. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

МНОГОУГОЛЬНИК — МНОГОУГОЛЬНИК, а, муж. В математике: геометрическая фигура, ограниченная замкнутой ломаной линией. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Многоугольник — Многоугольник. В элементарной геометрии М. называется фигура,ограниченная прямыми линиями, называемыми сторонами. Точки, в которыхстороны пересекаются, называются вершинами. Число вершин равняется числусторон. Смотря по этому числу, М. называются … Энциклопедия Брокгауза и Ефрона

многоугольник — (напр. сил) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN polygon … Справочник технического переводчика

многоугольник — а; м. Геометрическая фигура, ограниченная ломаной линией, звенья которой образуют более четырёх углов. Правильный м. Сторона многоугольника. * * * многоугольник (на плоскости), геометрическая фигура, ограниченная замкнутой ломаной линией, звенья… … Энциклопедический словарь

Многоугольник — замкнутая ломаная линия. Подробнее, М. линия, которая получается, если взять n любых точек A1, A2, . An и соединить прямолинейным отрезком каждую из них с последующей, а последнюю с первой (см. рис. 1, а). Точки A1, A2, . An… … Большая советская энциклопедия

Источники:

https://naobumium.info/planimetriya/mnogougolniki.php
https://gufo.me/dict/bse/%D0%9C%D0%BD%D0%BE%D0%B3%D0%BE%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA
https://dic.academic.ru/dic.nsf/ruwiki/6735

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов:
Для любых предложений по сайту: [email protected]