3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое машинное обучение

Содержание

Что такое машинное обучение и почему оно может лишить вас работы

Новые алгоритмы позволяют компьютерам решать задачи, которые раньше были под силу только человеку. С одной стороны, это принесёт нам огромную пользу, с другой — новые вызовы для каждого из нас. Чтобы прогресс не застал вас врасплох, будьте начеку и следите за ситуацией.

До недавних пор программистам приходилось писать сложные и очень точные инструкции даже для того, чтобы компьютеры могли выполнять самые простые задачи.

Языки программирования всегда развивались, но самым значительным достижением в этой области стало упрощение работы с кодом. Теперь компьютеры можно не программировать как раньше, а настраивать таким образом, чтобы они обучались сами.

Этот процесс, названный машинным обучением, обещает стать настоящим технологическим прорывом и может повлиять на любого человека, независимо от сферы его деятельности. Поэтому разобраться в теме будет полезно каждому из нас.

Что такое машинное обучение

Машинное обучение избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему. Вместо этого компьютер учат находить решение самостоятельно. По сути, машинное обучение — это очень комплексное применение статистики для поиска закономерностей в данных и создания на их основе нужных прогнозов.

История машинного обучения началась ещё в 1950-е годы, когда информатикам удалось научить компьютер играть в шашки. С тех пор вместе с вычислительной мощностью росла сложность закономерностей и прогнозов, которые компьютер способен распознать и составить, а также проблем, которые он может решить.

Сначала алгоритм получает набор обучающих данных, а затем использует их для обработки запросов. К примеру, вы можете загрузить в машину несколько фотографий с описанием их содержимого вроде «на этом фото изображён кот» и «на этом фото нет кота». Если после этого добавить в компьютер новые изображения, он начнёт определять снимки с котами уже самостоятельно.

Quantamagazine.org

Алгоритм продолжает совершенствоваться. Верные и ошибочные результаты распознавания попадают в базу данных, и с каждым обработанным фото программа становится умнее и всё лучше справляется с поставленной задачей. В сущности, это и есть обучение.

Почему машинное обучение — это важно

Теперь машины можно смело применять в областях, которые раньше считались доступными только человеку. Хотя технологии все ещё далеки от идеала, суть в том, что компьютеры постоянно улучшаются. Теоретически, они могут развиваться бесконечно. В этом основная идея машинного обучения.

Машины учатся видеть изображения и классифицировать их, как в вышеупомянутом примере с фото. Они могут распознавать текст и числа на этих изображениях, а также людей и места. Причём компьютеры не просто выявляют написанные слова, но и учитывают контекст их употребления, включая позитивные и негативные оттенки эмоций.

Помимо прочего, машины могут слушать нас и отвечать. Виртуальные ассистенты в наших смартфонах — будь то Siri, Cortana или Google Now — воплощают прорывы в машинной обработке естественного языка и продолжают развиваться.

Ibtimes.co.uk

Кроме того, компьютеры учатся писать. Алгоритмы машинного обучения уже генерируют новостные статьи. Они могут писать о финансах и даже спорте.

Такие функции могут изменить все виды деятельности, основанные на вводе и классификации данных, которые раньше были под силу только человеку. Если компьютер может распознать изображение, документ, файл или другой объект и точно описать его, это открывает широкие возможности для автоматизации.

Как машинное обучение применяют сегодня

Алгоритмы машинного обучения уже способны впечатлить.

Компания Medecision использует их, чтобы вычислять факторы риска для различных заболеваний в больших населённых пунктах. Например, алгоритм определил восемь переменных, с помощью которых можно заключить, нуждается больной диабетом в госпитализации или же нет.

После поисков нужного товара в онлайн-магазинах вы могли замечать, что видите в интернете рекламу этого продукта ещё долгое время. Такая маркетинговая персонализация является только вершиной айсберга. Компании могут автоматически рассылать электронные письма, купоны, предложения и отображать рекомендации, подобранные под каждого клиента индивидуально. Все это более аккуратно подталкивает потребителя к покупке.

Обработке естественного языка находят разное применение во множестве сфер. Например, с её помощью заменяют сотрудников в службах поддержки, чтобы быстрее выдавать необходимую информацию пользователям. Кроме того, подобные алгоритмы помогают юристам в расшифровке сложной документации.

Читать еще:  Как проявляется кишечная инфекция у детей

Недавно IBM опросила Automotive 2025: Industry without borders. руководителей автомобильных компаний. 74% из них ожидают появления на дорогах умных машин уже к 2025 году.

Такие автомобили будут получать информацию о владельце и своём окружении с помощью интернета вещей. На основе этих данных они смогут менять параметры температуры, аудио, позицию кресла и другие настройки автоматически. Умные машины также будут сами решать возникающие проблемы, самостоятельно водить и давать рекомендации с учётом трафика и дорожных условий.

Чего ждать от машинного обучения в будущем

Возможности, которые открывает перед нами машинное обучение в будущем, практически безграничны. Вот несколько впечатляющих примеров.

  • Персонализированная система здравоохранения, предоставляющая пациентам индивидуальную медицинскую помощь с учётом их генетического кода и образа жизни.
  • Защитные программы, которые с высочайшей точностью вычисляют хакерские атаки и вредоносное ПО.
  • Компьютеризированные системы безопасности для аэропортов, стадионов и других подобных мест, выявляющие потенциальные угрозы.
  • Самоуправляемые автомобили, которые ориентируются в пространстве, минимизируют количество пробок и аварий на дорогах.
  • Продвинутые системы защиты от мошенников, способные обезопасить деньги на наших счетах.
  • Универсальные переводчики, которые позволят нам получать точный и быстрый перевод с помощью смартфонов и других умных устройств.

Почему вам стоит следить за машинным обучением

Хотя многие ощутят перечисленные возможности с приходом новых технологий, большинство не захочет разбираться в том, как всё это работает изнутри. Но всем нам лучше оставаться начеку. Ведь вместе со всеми благами дальнейший прогресс принесёт ощутимые последствия для рынка труда.

Машинное обучение на основе постоянно растущего количества данных, которые генерирует почти каждый человек на Земле, полностью изменит профессии. Конечно, эти инновации упростят работу многих людей, но будут и те, кого они лишат работы. Ведь алгоритмы уже отвечают на письма, интерпретируют медицинские снимки, помогают в судебных процессах, анализируют данные и так далее.

Машины учатся на собственном опыте, поэтому программистам больше не нужно писать код для каждой нестандартной ситуации. Эта способность к обучению вместе с развитием робототехники и мобильных технологий позволит компьютерам справляться со сложными задачами лучше, чем когда-либо раньше.

Но что случится с людьми, когда их превзойдут машины?

По данным The Future of Jobs. Всемирного экономического форума, в течение следующих пяти лет компьютеры и роботы займут пять миллионов рабочих мест, которые сейчас принадлежат людям.

Таким образом, нам нужно следить за тем, как машинное обучение меняет рабочий процесс. И неважно, кто вы: юрист, медик, сотрудник службы поддержки, водитель грузовика или кто-то ещё. Перемены могут коснуться каждого.

Лучший способ избежать неприятного сюрприза, когда компьютеры начнут отбирать рабочие места, — мыслить превентивно и готовиться.

Что такое машинное обучение простыми словами

Искусственный интеллект

Лет 5 назад искусственный интеллект (он же ИИ) ассоциировался с фантастическими фильмами, где роботы спасали мир, а суперкомпьютеры пытались его поработить. Сегодня про ИИ говорят все. Давайте попробуем разобраться, что за магия скрывается за человекоподобными машинами, как они думают и зачем нужно машинное обучение.

Хотя тайна человеческого мозга еще не раскрыта и до создания его программных аналогов нам далеко, сегодня уже существуют роботы, которые способны выполнять определенные действия и принимать решения гораздо эффективнее, чем Homo Sapiens.

ИИ вовсю принимает участие в медицине, помогая врачам выявить болезнь Альцгеймера по речи пациента, определить предрасположенность к заболеваниям, и творит многие другие удивительные вещи. Умные машины применяются почти во всех возможных отраслях. Например, компания LG планирует в 2023 году открыть завод по производству техники, на котором все процессы, начиная от закупки сырья, заканчивая контролем качества выпускаемой продукции, будут полностью автоматизированы.

Мощно, не правда ли? И это всё не набор команд, которые выполняются при определенных условиях. Это программа, которая способна анализировать и на основании данных выполнять то или иное действие.

Чтобы ИИ научился принимать правильные решение, его нужно обучить, этот процесс и называется машинным обучением (machine learning).

Machine learning — что нужно?

Выделяют три составляющие машинного обучения (ML):

Данные. Если мы хотим предсказывать погоду, необходима сводка погоды за последние несколько лет (чем больше, тем лучше). Хотим определять спам, нужны примеры таких писем. Чем качественнее данные, тем эффективнее будет работать программа.

Признаки. Это набор свойств, характеристик или признаки, которые описывают нашу модель. Если говорим о погоде, то это температура, скорость ветра, время года. В случае со спамом — это отправители, темы писем, определенные фразы и изображения. Правильно подобранные признаки — залог успешного обучения.

Алгоритм. Тут всё просто. Каждую задачу можно решить разными способами. Для разных целей можно подобрать разные алгоритмы.

Но всё же главное в ML — это данные. Каким бы совершенным не был бы алгоритм работы, если качество данных не очень, то результат будет соответствующим.

Читать еще:  Что такое конфуцианство

Методы машинного обучения

Как работает машинное обучение? Искусственный интеллект похож на маленького ребенка, которому родители объясняют, почему небо голубое, а трава зеленая. Также методом проб и ошибок он самостоятельно познаёт мир.

Существует множество методов обучения, каждый из которых включает в себя разные алгоритмы. Поговорим про самые распространённые базовые методы:

  • классическое обучение;
  • обучение с подкреплением;
  • нейросети и глубокое обучение.

Пробежимся кратко по каждому из них.

Классическое обучение

Большинство ИИ использует классическое обучение. Это простые алгоритмы, основанные на закономерностях в данных.

Есть два типа классического обучения:

  • с учителем (supervised learning);
  • без учителя (unsupervised learning).

Обучение с учителем

Принцип простой. Мы обучаем машину на реальных примерах. Допустим, мы хотим научить её отличать яблоки от груш. Мы загружаем в программу данные (dataset) и говорим ей, что на этих картинках изображены яблоки, а на этих груши. А она, в свою очередь, находит общие признаки, анализирует их и выстраивает связи.

Если мы дадим машине картинку без описания, то она на основании полученных данных должна верно определить, что за фрукт на ней изображен.

Поэтому важно отбирать правильные данные для обучения и загружать их как можно больше: чем больше данных мы загрузим, тем точнее и быстрее будет происходить определение.

Обучение без учителя

Этот метод используется, когда нет возможности предоставить роботу размеченные данные. Программа сама находит закономерности, общие признаки и классифицирует полученные данные.

Обучение без учителя отлично подходит для кластеризации (сегментации) данных. Его часто используют в таргентированной рекламе. Когда действия или предпочтения пользователя нельзя заранее классифировать.

Обучение с подкреплением

Возьмем для примера игру «Змейка». На поле расположен объект, до которого змейке необходимо добраться, но сама она не знает, как это сделать и какой путь самый эффективный, она знает только расстояние до объекта. Методом проб и ошибок змейка находит оптимальный вариант движения и анализирует ситуации, которые ведут к проигрышу.

Данный способ также используют для обучения роботов-пылесосов или самоуправляемых автомобилей. Обучение похоже на игру: за правильно принятое решение машина получает балл, за ошибки — баллы вычитаются.

Нейросети и глубокое обучение (Deep learning)

Любая нейросеть — это набор нейронов (функций) и связей между ними. Задача нейрона — взять входные числа, выполнить над ними определенные действия и выдать результат. Пример полезного нейрона: просуммировать все цифры со входов и, если их сумма больше N, отправить на выход единицу, иначе — ноль.

Связи — это каналы, через которые нейроны отправляют друг другу числа. У каждой связи есть своя оценка — параметр, который можно условно представить как прочность связи. Когда через связь с оценкой 0.5 проходит число 10, оно превращается в 5. Сам нейрон не разбирается, что к нему пришло, и суммирует всё подряд. Получается, что оценка нужна для управления тем, на какие входы нейрон должен реагировать, а на какие — нет.

Нейроны и связи — это условное обозначение, в реальном программировании нейросеть представляет собой матрицу и всё считается матричными представлениями, так как это эффективно по скорости.

Для чего необходимы нейронные сети:

  • определение объектов на видео и фото;
  • обработка фотографий;
  • распознавание речи;
  • машинный перевод.

В упрощённом виде работа нейросети выглядит примерно так:

На деле все немного сложнее. Изображение делится на пиксели, затем выявляются доминирующие линии по горизонтали и по вертикали, всё это складывается в несколько массивов, из которых получается очертание объекта. В итоге, на основании этих данных мы приходим к нужному результату.

Введение в машинное обучение

Перевод статьи разработчика алгоритмов машинного обучения, бизнес-консультанта и популярного автора Ганта Лаборде «Machine Learning: from Zero to Hero».

Начнешь c “Зачем?”, придешь к “Я готов!”

Если вы мало знаете об основах машинного обучения, то эта статья как раз для вас. Я буду постепенно излагать введение в машинное обучение, склеивая дружелюбный текст с вдохновляющими примерами. Присядь и расслабься, это займет некоторое время.

Почему машинное обучение сейчас в тренде

Искусственный интеллект (далее ИИ) всегда имел применение, начиная от перемещения ракетки в пинг понге и заканчивая выполнением комбо в Street Fighter.

ИИ опирается на представление программиста о том, как программа должна себя вести. Но как часто становится понятно, не все программисты талантливы в программировании искусственного интеллекта. Стоит только погуглить “эпичные фейлы в играх” и наткнуться на глюки в физике, даже у опытных разработчков.

Несмотря на это, компьютер поддается обучению для игры в видеоигры, понимания языка и распознавания людей и предметов. Этот навык исходит из старой концепции, которая только недавно получила необходимые вычислительные мощности для существования вне теории. Я имею в виду машинное обучение (ML, Machine learning).

Не продумывайте сложные алгоритмы самостоятельно — обучите компьютер создавать собственные сложные алгоритмы. Как это будет работать? Алгоритм не столько написан, сколько выведен. Посмотри это короткое видео, с помощью анимации оно должно дать понимание общего принципа создания ИИ.

Читать еще:  Giorgia soleri кто это

И как возможно такое, что мы даже не понимаем устройство рабочего алгоритма? Прекрасным визуальным примером был ИИ, написанный для прохождения игр Марио. Люди хорошо знают, как нужно играть в сайд-скроллеры, но это безумие пытаться определить стратегию игры для ИИ.

Впечатлены? Как это возможно? К счастью, Элон Маск представил некоммерческую компанию, которая предоставляет возможность подключения ИИ к любым играм и задачам с помощью дюжины строк кода. Посмотрите, как это работает.

Зачем следует использовать машинное обучение?

У меня два ответа на вопрос, почему вас должно это заботить. Во-первых, с помощью машинного обучения компьютеры выполняют задачи, которые раньше они не выполняли. Если хотите создать что-то новое для всего мира, вы можете сделать это, используя машинное обучение.

Во-вторых, если не влияете на мир, мир повлияет на вас. Компании инвестируют в ML, и эти инвестиции уже меняют мир. Лидеры мысли предупреждают, что нельзя позволить алгоритмам машинного обучения быть в тени. Представьте себе, если бы монополия из нескольких корпораций контролировала Интернет. Если мы не “возьмемся за оружие”, наука не будет нашей.

Christian Heilmann высказал правильную мысль в беседе о машинном обучении:

“Можно надеяться, что остальные будут использовать эту мощь только в мирных целях. Я, например, не рассчитываю на эту милость. Предпочитаю играть и быть частью этой революции. И вы присоединяйтесь”.

Хорошо, теперь я заинтересован…

Концепт полезный и веселый. Но что за дичь там в действительности творится? Как это работает? Если хочешь сразу погрузиться, советую пропустить раздел и перейти к следующему “С чего мне начать?”. Если вы уже мотивированы делать модели ML, эти видео не понадобятся.

Если ты все еще пытаешься понять, как такое вообще возможно, следующее видео проведет тебя через логику работы алгоритмов, используя классическую задачу ML — проблему распознавания рукописного текста.

Классно, не правда ли? Видео демонстрирует, что каждый новый слой становится проще, а не сложнее. Будто бы функция пережевывает данные в более мелкие кусочки, которые потом выстраиваются в задуманный концепт. Поиграйтесь с этим процессом здесь.

Занятно наблюдать, как данные проходят через натренированную модель, но ты также можешь пронаблюдать тренировку собственной нейронной сети.

Классический пример машинного обучения в действии — датасет прямиком из 1936-го года, называемый ирисами Фишера. На презентации эксперта JavaFX, посвященной машинному обучению, я узнал, как использовать этот инструмент, чтобы визуализировать прикрепление и обратное распространение весов к нейронам в нейронной сети. Понаблюдайте за тем, как тренируется нейронная сеть.

Обучение нейронной сети Ирисы

Готовы стать Эйнштейном новой эры? Прорывы происходят каждый день, поэтому начинайте сейчас.

С чего мне начать?

Доступных ресурсов много. Я рекомендую два подхода.

Основы

С этим подходом вы поймете машинное обучение вплоть до алгоритмов и математики. Знаю, этот путь кажется тяжким, но зато как круто будет по-настоящему проникнуться в детали и кодить с нуля!

Если хочешь получить силу в этой сфере и вести серьезные обсуждения о ML, то этот путь для тебя. Советую пройти курс по искусственным нейронным сетям. Этот подход позволит вам изучать ML на вашем телефоне, убивая время, например, в очереди. Одновременной проходите курс о машинном обучении.

Курсы могут показаться слишком сложными. Для многих это причина не начинать, но для других это повод пройти это испытание и получить сертификат о том, что вы справились. Все вокруг будут впечатлены, если справитесь, потому что это действительно не просто. Но если вы это сделаете, получите понимание о работе ML, которое позволит вам успешно применять его.

Гонщик

Если вы не заинтересованы в написании алгоритмов, но хотите использовать их для создания сайтов и приложений, то используйте TensorFlow и погрузитесь в crash course.

TensorFlow — это библиотека с открытым исходным кодом для машинного обучения. Ее можно использовать любым способом, даже с JavaScript. А вот crash source.

Услуги ML

Если проходить курсы не ваш стиль, то пользуйтесь ML как услугой. Технические гиганты владеют натренированными моделями, а сектор услуг по машинному обучению растет.

Предупреждаю, что нет гарантии, что ваши данные будут в безопасности или вообще останутся вашими, но предложения услуг по ML очень привлекательны, если вы заинтересованы в результате и имеете возможность загрузить данные на Amazon/Microsoft/Google.

Давайте быть созидателями

Я все еще новичок в мире ML и счастлив осветить путь для других, путь, который даст нам возможность завоевать эру, в которой мы оказались.

Крайне важно быть на связи со знающими людьми, если изучаете это ремесло. Без дружеских лиц и ответов, любая задача покажется трудной. Возможность спросить и получить ответ кардинально облегчает ситуацию. Дружелюбные люди всегда помогут дельными советами.

Надеюсь, эта статья вдохновила вас и ваше окружение изучать ML!

Источники:

http://lifehacker.ru/chto-takoe-mashinnoe-obuchenie/
http://www.reg.ru/support/vps-servery/oblachnie-serveri-vps/usluga-oblachnyye-servery/chto-takoe-mashinnoe-obuchenie-prostymi-slovami
http://neurohive.io/ru/osnovy-data-science/vvedenie-v-mashinnoe-obuchenie-kto-ego-primenjaet-i-kak-stat-razrabotchikom/

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector