24 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое лазеры в физике

Что такое лазер? Принцип работы и применение.

Сложно в наше время найти человека, который никогда не слышал бы слова «лазер», однако чётко представляют, что это такое, весьма немногие.

За полвека с момента изобретения лазеры разных видов нашли применение в широком спектре направлений, от медицины до цифровой техники. Так что же такое лазер, каков принцип его действия, и для чего он нужен?

Что такое лазер?

Возможность существования лазеров была предсказана Альбертом Эйнштейном, который ещё в 1917 году опубликовал работу, говорящую о возможности излучения электронами квантов света определённой длины. Это явление было названо вынужденным излучением, но долгое время оно считалось нереализуемым с технической точки зрения.

Однако с развитием технических и технологических возможностей создание лазера стало делом времени. В 1954 году советские учёные Н. Басов и А. Прохоров получили Нобелевскую премию за создание мазера – первого микроволнового генератора, работающего на аммиаке. А в 1960 году американец Т. Мейман изготовил первый квантовый генератор оптических лучей, названный им лазером (Light Amplification by Stimulated Emission of Radiation). Устройство преобразовывает энергию в оптическое излучение узкой направленности, т.е. световой луч, поток квантов света (фотонов) высокой концентрации.

Принцип функционирования лазера

Явление, на котором основана работа лазера, называется вынужденным, или индуцированным, излучением среды. Атомы определённого вещества могут испускать фотоны под действием других фотонов, при этом энергия воздействующего фотона должна быть равной разности между энергетическими уровнями атома до излучения и после него.

Излучённый фотон является когерентным тому, который вызвал излучение, т.е. в точности подобен первому фотону. В результате слабый поток света в среде усиливается, причём не хаотично, а в одном заданном направлении. Образуется луч вынужденного излучения, которое и получило название лазера.

Классификация лазеров

По мере исследования природы и свойств лазеров были открыты различные виды этих лучей. По виду состояния исходного вещества лазеры могут быть:

  • газовыми;
  • жидкостными;
  • твердотельными;
  • на свободных электронах.


В настоящее время разработано несколько способов получения лазерного луча:

  • при помощи электрического тлеющего либо дугового разряда в газовой среде – газоразрядные;
  • при помощи расширения горячего газа и создания инверсий населённости – газодинамические;
  • при помощи пропускания тока через полупроводник с возбуждением среды – диодные или инжекционные;
  • путём оптической накачки среды лампой-вспышкой, светодиодом, другим лазером и т. д.;
  • путём электронно-лучевой накачки среды;
  • ядерной накачкой при поступлении излучения из ядерного реактора;
  • при помощи особых химических реакций – химические лазеры.

Все они обладают своими особенностями и отличиями, благодаря которым находят применение в различных сферах промышленности.

Читать еще:  Погода в спб на завтра

Практическое использование лазеров

На сегодняшний день лазеры разных типов применяются в десятках отраслей промышленности, медицины, IT технологий и других сферах деятельности. С их помощью осуществляются:

  • резка и сварка металлов, пластмасс, других материалов;
  • нанесение изображений, надписей и маркировка поверхности изделий;
  • сверление сверхтонких отверстий, прецизионная обработка полупроводниковых кристаллических деталей;
  • формирование покрытий изделий напылением, наплавкой, поверхностным легированием и т.д.;
  • передача информационных пакетов при помощи стекловолокна;
  • выполнение хирургических операций и других лечебных воздействий;
  • косметологические процедуры омоложения кожи, удаления дефектных образований и др.;
  • наведение на цель различных видов вооружений, от стрелкового до ракетного оружия;
  • создание и использование голографических методов;
  • применение в различных научно-исследовательских работах;
  • измерение расстояний, координат, плотности рабочих сред, скорости потоков и многих других параметров;
  • запуск химических реакций для проведения различных технологических процессов.


Существует ещё немало направлений, в которых лазеры уже используются или найдут применение в самое ближайшее время.

Физика для “чайников”: основы работы лазеров

Лазеры давно вошли в нашу жизнь повседневную жизнь. С одной стороны, почти у каждого дома или на работе есть лазерный принтер, к которому все привыкли. С другой – лезерные мечи все так же будоражат воображение тех, кто первый раз (да и не первый тоже) смотрит Звездные Войны. В данной статье мы на элементарном уровне разберем, что такое лазер, а также рассмотрим физические основы работы этого хитрого понятия.

Что такое лазер?

Интересный факт: знаете ли Вы, что до появления лазеров были мазеры?

Мазер – квантовый генератор, излучающий когерентные микроволны (волны сантиметрового диапазона)

Мазер – это аббревиатура, от английского microwave amplification by stimulated emission of radiation, что в переводе означает “усиление микроволн с помощью вынужденного излучения”. Мазер был изобретен в 1950-х годах, на несколько лет раньше лазера.

Мазеры и лазеры работают по одному и тому же принципу. Отличие состоит в том, что мазеры усиливают волны разного диапазона. Мазер – это усиление микроволн, а лазер – усиление света, то есть волн видимого диапазона.

Лазерные мечи

Лазер (от ight amplification by stimulated emission of radiation – «усиление света посредством вынужденного излучения») – устройство, которое преобразует энергию накачки в энергию монохроматического, поляризованного и узконаправленного потока излучения.

Среди всех этих умных слов для понимания принципа работы лазера нужно выделить два – «вынужденного излучения». Это именно то, что лежит в основе работы лазера.

Именно явление вынужденного излучения лежит в основе работы лазера. В чем суть?

Читать еще:  В чём разница между фантазией и мечтой

Вынужденное излучение

Мы знаем, что атом может находиться в разных энергетических состояниях. В самом простом случае состояний всего два – основное и возбужденное. Электроны вращаются вокруг ядра атома по орбитам, которые соответствуют определенным энергиям. При определенных условиях электрон может как бы перескакивать с одной орбиты на другую и обратно. Т.е. электроны, вращающиеся вокруг ядра, могут переходить с одного энергетического уровня на другой. Причем если электрон переходит с более высокого энергетического уровня на нижний, выделяется энергия. Для перехода с нижнего уровня на верхний или наоборот, энергию электрону нужно сообщить.

Излучение атома

А теперь представим, что у нас есть атом в возбужденном состоянии, и на него налетает фотон с энергией, равной разности энергий уровней атома. В таком случае наш атом испустит точно такой же фотон, а электрон с высшего уровня энергии перейдет на более низкий. Это и есть вынужденное излучение. Различают также спонтанное излучение, когда возбужденный атом самопроизвольно испускает фотон.

Как это явление работает в лазерах?

Представим себе самый простой лазер, состоящий из системы накачки, рабочей среды и оптического резонатора. Система накачки необходима, чтобы сообщить рабочей среде энергию, которая будет преобразована в энергию излучения, и создать инверсию населенностей энергетических уровней. Например, если рабочим телом нашего лазера являются атомы с всего двумя энергетическими состояниями, то для работы лазера необходимо, чтобы возбужденные атомы превышали по количеству невозбужденные. Инверсия населенностей – основа того, чтобы генерация излучения в лазере могла начаться. Как сделать презентацию в ворде вы можете в обзорной статье наших авторов.

Твердотельный лазер

Рабочим телом лазера могут быть как твердые тела, так и жидкости с газами. Физическая суть работы всех этих приборов остается одной и той же. Кстати, первый в мире лазер был рубиновым, т.е. имел в качестве рабочего тела кристалл рубина.

Когда инверсия населенностей достигнута, возбужденные атомы рабочей среды начинают излучать фотоны (спонтанное излучение). Чтобы процесс не «угас», необходимо обеспечить обратную связь. В простейшем случае роль оптического резонатора играют два зеркала, одно из которых пропускает часть фотонов (полупрозрачно), а второе – отражает. Таким образом, определенная часть испущенных фотонов остается в рабочем пространстве, индуцируя излучение все новых и новых атомов, от чего процесс начинает развиваться лавинообразно и лазер светит.

Работа лазера

Надеемся, Вы стали чуточку эрудированнее после прочтения этой статьи. Если у Вас есть более глубинные и фундаментальные вопросы по теме «лазеры», помните – среди наших авторов есть люди, готовые в любой момент ответить на них.

Читать еще:  Чем лечить фронтит

IT News

Что такое лазер?

  • ” rel=”nofollow”> Печать
  • E-mail

Дата Категория: Физика

Лазер — это устройство, создающее узкий пучок интенсивного света. В работе лазера используется свойство электронов атома занимать только определенные орбиты вокруг своего ядра. Когда атом получает квант энергии, он может перейти в возбужденное состояние, которое характеризуется перемещением электронов с самой низкой энергетической орбиты (так называемый основной уровень) на орбиту с более высоким энергетическим уровнем.

Однако электроны не могут долго оставаться на орбите с высокой энергией и самопроизвольно возвращаются на основной уровень, при этом каждый такой электрон испускает фотон (световую волну). Процесс, начавшийся в одном атоме, запускает цепную реакцию перехода электронов других атомов на более низкие энергетические орбиты, в результате чего образуется лавина одинаковых световых волн, согласованно изменяющихся во времени. Эти волны формируют световой луч, который у некоторых лазеров имеет столь высокую мощность, что может резать камни и металлы. Изобретенные в 1960 году, лазеры имеют сейчас очень широкую сферу применения, начиная от медицины (для удаления опухолей) и заканчивая музыкой (для записи и считывания сигналов на компакт-дисках).

Твердотельный лазер

Типичный лазер состоит из трубки с твердым кристаллом, например, рубином (рисунок сверху), закрытой с торцов непрозрачным и частично прозрачным зеркалами. Электрическая обмотка возбуждает атомы кристалла для генерации световых волн, которые перемещаются между зеркалами до тех пор, пока не станут достаточно интенсивными, чтобы пройти через частично прозрачное зеркало.

Создание лазерного луча

2. Сразу же после включения лазера энергия из разрядной трубки переводит электроны на более высокие энергетические орбиты <внешние окружности).

3. Когда электроны начинают возвращаться на основной уровень, они испускают свет, побуждая другие электроны делать то же самое. Результирующий световой пучок имеет одну длину волны и, по мере возвращения новых электронов на низкие орбиты, становится все более мощным.

Более резкий фокус

1. Лазерное излучение (один цвет) 2. Естественный свет (много цветов)

Лазерный пучок содержит свет только одной длины волны и может быть сфокусирован линзой практически в точку (рисунок справа). Естественный свет, состоящий из лучей с различными длинами волн, так резко не фокусируется (дальний рисунок справа). Способность концентрировать огромную энергию в узком луче и передавать этот луч на большие расстояния практически без рассеяния и ослабления, характерных для многоцветного света, делает лазер важнейшим инструментом в руках человека.

Источники:

https://www.vseznaika.org/fizika/chto-takoe-lazer-princip-raboty-i-primenenie/
https://zaochnik-com.ru/blog/fizika-dlya-chajnikov-osnovy-raboty-lazerov/
https://information-technology.ru/sci-pop-articles/23-physics/258-chto-takoe-lazer

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов:

Для любых предложений по сайту: [email protected]